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Abstract

Nominal sets can be used to model data languages, which are languages over infinite alphabets.
Regular nominal automata with name allocation (RNNA) first produce bar strings containing
bound atoms that can be renamed under alpha-equivalence. Under local freshness semantics,
the language generated by such automata contains all alpha-equivalent bar strings with the
binders removed.

In this thesis, we present a coalgebraic definition for the trace semantics of RNNA in the
framework of graded semantics. First, we define a general syntax and semantics for nominal
algebra which can be used to define graded algebraic theories over nominal sets. It can then
be shown that every such graded theory induces a graded monad over the category of nominal
sets. We proceed provide an explicit description of a graded theory that can be used to capture
exactly the trace semantics under local freshness.
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1 Introduction

Data languages, which are languages over infinite alphabets, are useful for modeling commu-
nication between processes where the range of values is infinite. As such, there is a desire to
describe such languages using conservative extensions of regular automata for finite alphabets
[NSV04]. Nominal automata with name allocation [Sch+21] provide such an extension, which
is built around nominal sets [Pit13], a theory defining name abstraction and alpha-equivalence
in an abstract setting.

These nominal automata introduce binders into the transitions of the automaton. A state
may have free transitions and bound transitions. Bound transitions are closed under alpha-
equivalence, thus introducing ”placeholders” or "variables:” If there is a bound transition from
one state to another, there are also transitions to all states that are alpha-equivalent to that
successor state. Such automata can be constructed from a finite description by requiring that
every state be finitely branching up to alpha-equivalence, even though there may be infinitely
many transitions from any given state through alpha-equivalence. To describe their semantics,
we first consider all words literally accepted by the automaton, including the binders. Then,
under local freshness semantics, we consider all alpha-equivalent representatives of these words
[Sch+21].

The goal of this thesis is to give a description of this semantics using graded semantics [MPS15].
This is a generic framework for describing the trace semantics of automata built around uni-
versal coalgebra [Rut00] — a generalization of state-based systems with transition relations. In
systems such as labeled transition systems and regular automata, a family of transition rela-
tions specifies whether there is a transition from one state to another, where the states are
elements of a set. Universal coalgebra extends this concept to arbitrary categories for states,
defining the branching behavior of states as an endofunctor over that category. An instance of
such a system is then given as a coalgebra for this functor. The graded semantics is based on
encoding the pretraces of such systems, which consist of the traces and their respective post-
states. These can be captured using graded monads, using grades to specify the depth of the
pretraces; the unit corresponds to an empty pretrace for a state and multiplication corresponds
to concatenating two pretraces. The graded semantics of a system can then be given using a
natural transformation from the functor describing the system type into the graded monad. In
the past, this framework has been used to formalize various equivalences for types of systems
[For+25; FMS20] and multiple behavioral distances [DMS20].

To demonstrate the application of this framework to nominal automata with name allocation,
we will first define a suitable notion of graded theories over nominal sets. These are algebraic
equational theories that can be shown to induce graded monads in an abstract setting. This
is inspired by similar formalizations for other categories [MPS15; For+25; FMS20]. We then
give an explicit description of how the local freshness semantics of nominal automata can be
formalized using this framework.






2 Preliminaries

We will first summarize some basic foundations of nominal sets, graded semantics, and nominal
automata.

Throughout this thesis, we will fix a countably infinite set A of atoms.

2.1 Nominal Sets

We will start with some basic definitions and statements from nominal sets. For a more complete
overview, see other sources [Pit13].

In the following, we let Perm(A) denote the group of permutations on A; this is the set of
bijective functions 7 : A — A such that m(a) = a for almost all @ € A. Recall that Perm(A)
operates on a set X with a group action - : Perm(A)x X — X ifid-x =z and 7-(7-2) = (wo7)-x
for all 7,7 € Perm(A) and = € X. Given a set X equipped with such a group action -, we will
often write mx instead of 7 - x. We recall some definitions regarding these permutation actions.
Definition 2.1 ([Pit13]). Let X,Y be sets equipped with permutation actions.

1. A function f: X — Y is equivariant if f(nz) = 7 f(x) for all x € X and 7 € Perm(A).

2. A relation R C X x X is equivariant if x R y implies 7z R 7y for all z,y € X and
m € Perm(A).

3. The orbit of x € X is Perm(A) - z := {mx : 7 € Perm(A)}.
4. If x € X, then fix(z) := {7 € Perm(A) : mx = x} is the set of permutations fixing x.
5. If S C X, then Fix(z) := (g fix(x) is the set of permutations fixing S.

This allows us to define a notion of variables upon which an element in a set "depends”:

Definition 2.2 (Support [Pit13]). Let X be a set equipped with a permutation action. A set
S C A supports an element x € X if Fix(S) C fix(x).

Definition 2.3 (Nominal Sets [Pit13]). A set X equipped with a permutation action is a
nominal set if every element x € X is finitely supported by some set S € Pr(A).

It easily follows that every element x in a nominal set has a least support, which we will denote
supp(x). We will sometimes refer to it as the support of z. If an atom a does not occur in the
support of z, we call it fresh for z and write a#x.

Example 2.4. The set of A terms, equipped with the permutation action which renames the
variables in a term, forms a nominal set [Pit13]. In this context, supp(Az.zy) = {x,y}.

Since the support intuitively represents the names an element "depends” on, two permutations

applied to an element yield the same results if the permutations are equal for all atoms in the
support:
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Proposition 2.5. If m,7' € Perm(A) and x € X with w(a) = 7'(a) for all a € supp(x), then
mr =7z,

Proof. For every a € supp(z), we have m(a) = 7/(a) and thus a = 7~ 1(7'(a)). It follows that

77 € Fix(supp(z)) and with this also 7~ 7'z = . O

The class of all nominal sets forms a category with equivariant functions as morphisms, which
we will refer to as Nom.

Proposition 2.6. If f : X — Y is an equivariant function between nominal sets, then
supp(f(x)) Csupp(z) for all x € X. If f is injective, then supp(f(x)) = supp(z).

Proof. Shown elsewhere [Pit13, Lemma 2.12]. O

Of particular interest will be the name abstraction functor:

Definition 2.7 (Name Abstraction Functor [Pit13]). Let the functor [A](—) : Nom — Nom be
defined by

[ALX = (A x X)/=a,
(A1) (a)) = (@) f(x),

where the relation =, is defined as
(a,7) =4 (d/,2") & 3Jee A\supp(a,d,z,2'). (a c)xr = (d’ ¢)2,

and the name abstraction (a)x is the equivalence class of (a, z).

Proposition 2.8. If a,d’ € A and z,2' € X, then (a)x = (a')a’ iff one of the following
statements is true:

1.a=d andz =12

2. a#d, a#r, and x = (a d')a’.
Proof. Shown elsewhere [Pit13, Lemma 4.3]. O

Proposition 2.9. Alpha-equivalence is an equivariant relation, in that for a,a’ € A, z,2' € X,
and m € Perm(A), we have

m(a)x = (ma)rx = (rd')yra’ = n(d )2’ & (a)x = ().
Proof. Shown elsewhere [Pit13, Section 4.2]. O

Given a nominal set X, we refer to the of finitely supported subsets as Pg(X ). Equipped with
element-wise permutation, this is itself a nominal set [Pit13]. Furthermore, we call a nominal
set orbit-finite if the permutation action on it only has finitely many orbits.

Proposition 2.10. The binary set operations U,N, \ on finitely supported sets are equivariant.
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Proof. For U: Let m € Perm(A), L1, Ly € Pg(X). First, assume 7z € 7L UnLe. W.lo.g.
assume that 7z € wLy, and thus € Ly C Ly U Ly. Then it follows that 7z € w(L; U Lo).
Conversely, assume 7x € 7(L; U Lg), and thus x € Ly U Ly. W.l.o.g. assume that = € L. Then
it follows that mx € wL1 C wlq U 7wLo.

For N and \: Shown elsewhere [Pit13, Proposition 1.9]. O

Proposition 2.11. If f : X — Y is equivariant, then the direct image of finitely supported sets
I : Pes(X) = Pes(Y) is also equivariant.

Proof. Let L € Pg(X) and m € Perm(A). We have to show that f[rL] = 7 f[L].

First assume that f(nz) € f[rL] with 7z € 7L, where x € L. By definition, we have f(z) €
fIL]. Tt follows from the equivariance of f that f(wz) = wf(x) € nf[L].

Conversely, assume that 7 f(z) € wf[L] with f(z) € f[L], where x € L. By definition, we have
mx € L and, by equivariance of f, nf(z) = f(nx) € flrL]. O

The following are some useful properties of equivariant equivalence relations ~ C X x X.

Proposition 2.12. The canonical projection [-|~ : X — X/~ is equivariant: If x € X and
7 € Perm(A), then [rx]. = 7[z]~.

Proof. First, assume that y € [rz].; ie., y ~ mx. Since ~ is equivariant, it follows that
771y ~ x. Because of this, we get 7!y € [z]~ and thus y = 77~ 1y € 7[z]~.

Conversely, assume that 7y € 7[z]., with y € [z]~. This means that y ~ x. It follows from the
equivariance of ~ that 7y ~ 7wz and thus 7y € [rx]~. O

Proposition 2.13. A finite set of atoms S € Ps(A) supports an equivalence class [x]~ € X/~
iff mx ~ x for all m € Fix(S).

Proof. Let m € Fix(S). It follows from Proposition 2.12 that 7[z]~ = [rz]~ and, by assumption,
[rx]~ = [2]~. O

Proposition 2.14. If [x]. € X/~ is an equivalence class, then supp([z]~) = ({supp(y) : y €

(2]~}
Proof. Shown elsewhere [Pit13, Proposition 2.30]. O

Corollary 2.15. If x € X is an equivalence class and a#[x]~, then there exists some T € X
with T ~ x and a#Z.

Proof. Follows directly from Proposition 2.14 and the definition of (. O

2.2 Nominal Automata with Name Binding

With nominal sets as a foundation, we can recall how nominal automata with name allocation
can be used to describe data languages [Sch+-21].

We will start by defining words with binders in them:
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Definition 2.16 (Extended Bar Alphabet and Bar Strings [Sch+21]). The extended bar
alphabet A is defined as
A=AU{la:a€A}.

We refer to words over A as bar strings. Equipped with the letter-wise permutation action,
the set of bar strings A* is a nominal set.

Definition 2.17 (Alpha-Equivalence between Bar Strings [Sch+-21]). We define alpha-equivalence
on bar strings as the equivalence =, generated by

wlav =, wlbu  if (a)v = (b)u in [A]JA*.
We will denote the equivalence class of a word w € A* as [w]q.

Using name abstraction introduced in Definition 2.7, we can first define the requirements of
regular nondeterministic nominal automata in the following way:

Definition 2.18 (RNNA [Sch+21]). A regular nondeterministic nominal automaton
(RNNA) is a tuple (A, —, s, F') consisting of
e an orbit-finite set () of states,
 an equivariant subset — C @ x A x @, called the transition relation,
e an initial state s € Q,
e an equivariant subset F' C @) of final states,
such that
1. The relation — is a-invariant: If s <% ¢ and (a)q = (a’)¢/, then s lal, q.
2. The relation — is finitely branching up to a-equivalence: For every state s € @), the sets
{(a,q): s % ¢} and {{a)q: s % ¢} are finite.
The relation — is extended to words in the usual manner.

Since we will only consider trace semantics, we will always assume F' = ). We will often view
RNNAs as orbit-finite coalgebras v : Q — H(Q) for the functor H given by

H : Nom — Nom,

H(X) = Ps(A x X) x Pe([A]X).

Note that there are some significant changes from the original definition [Sch+21]: Since F' = @),
there is no need to indicate whether a state is final. In addition, the power sets are not ufs, but
finite — since we are only considering orbit-finite coalgebras, the two are equivalent [Sch+21,
Lemma 2.2].

We will continue to describe the semantics of an RNNA:

Definition 2.19 (Literal and Bar Languages [Sch+21]). The literal language generated by
a state s € @ of an RNNA given by v : Q — H(Q) is defined as

Lo(s) = {w € A* : s = ¢ for some q € Q}.

The bar language generated by s is the quotient

Lo(s) = Lo(s)/=a.

14



Definition 2.20 (Local Freshness Semantics [Sch+21]). The local freshness semantics of a
bar language L is given by
D(L) = {ub(w) : [w], € L}.

Example 2.21. Consider the RNNA given in Figure 2.1 with a countably infinite alphabet
A={a,b,c,...}.

Figure 2.1: An RNNA, only showing one representative for alpha-equivalent transitions.

With this definition, we get
Lo(so) = {lbb, Iba, lce, |ca,ldd, |da, . . .},

La(s0) = {[1bb]a, [Ibala},
D(Lu(s0)) = {aa,bb,ba,cc, ca,dd, da, .. .}.

We will use the following statement, which provides information about the support of a successor
state of a state:

Proposition 2.22. Let s,q € Q be states of an RNNA given by v : Q — H(Q) and a € A.
1. If s % q, then supp(q) U {a} C supp(s),
2. If s % q, then supp(q) C supp(s) U {a}.

Proof. Shown elsewhere [Sch+21, Lemma 5.4]. O

2.3 Graded Semantics

Next, we will give a summary of graded semantics [MPS15].
First, recall the definition of graded monads:

Definition 2.23 (Graded Monads [MPS15]). A graded monad on a category C is a tuple
(M) neng,n, (Mnk)n,keNO) containing

o for every n € Ny, an endofunctor M, : C — C,
e a unit transformation n : Id — Mo,
o for every n, k € Ny, a multiplication transformation p™* : M, M) — M, 4,
satisfying
1. the unit law: Vn € Ng. u0" - nM,, = idys, = ™" - My,
2. the associative law: Vn, k,m € Ng. k™ . M pom = yrtkm o ynk
Intuitively, M, (X) captures pretraces of length n with poststates from X. Given a functor

describing the branching type of a system, we can then give a ”translation” from a branching
step into the pretrace monad. This ”translation” is described by a graded semantics:

15



Definition 2.24 (Graded Semantics [MPS15]). A graded semantics for G-coalgebras consists
of

« a graded monad ((M,),n, (1™*)),
e a natural transformation o : G — M;.
Given a G-coalgebra v : X — G(X), the a-pretrace sequence is then given by

7O = (X T Mo(X)),

M (~()
1(v\™)

in
A4 (x OX apoxy My (M, (X)) 25 M, 1(X)),

and the a-trace sequence is defined as (M,(!) o v : X — M,(1))nen,, where ! is the
morphism into the terminal object of the category.

We call two G-coalgebrasy : X — G(X)andd : Y — G(Y) a-trace equivalent if M, (!)oy(™ =
M, (1) 0 6™ for all n € Ny.

By lifting the morphism to the terminal object into the graded monad, we "forget” about the
poststates in the pretraces. This can be seen for labelled transition systems:

Example 2.25 (Labelled Transition Systems [MPS15]). We can view labelled transition sys-
tems as coalgebras for the functor G : Set — Set with

G(X) =P(A x X),

where for every state, we give a set of transitions to other states.

The graded semantics with M, (X) = P(A™ x X) and « = id describes the trace-semantics of
LTS: Let v : X — G(X) describe the the LTS shown in Figure 2.2.

&

Figure 2.2: A depiction of an LTS.

At depth 2, we have

7(2)(30) = {(abv 32)7 (CLC, 33)}7
(M (1) 0 7)) (50) = {ab, ac},

matching exactly the traces of length 2.

On Set, it can be shown that every graded monad is induced by a graded theory, given by
a (possibly class-sized) signature X, a class E of equational axioms, and a depth assignment
d(f) € Ny for every f € X, such that all axioms have a uniform depth (i.e., variables have
uniform depth 0 and f(¢1,...,tx) with d(f) = k has uniform depth n + k if all ¢; have uniform
depth n) [MPS15]. In particular, every such theory induces a graded monad ((M,),n, (u™*)),
where M, (X) consists of terms over X of uniform depth n modulo derivable equality, n converts
variables into terms, and ™" collapses layered terms, "removing” the inner equivalence classes
[MPS15]. This motivates a similar construction for nominal sets.
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There is an analogue of Eilenberg-Moore algebras for graded monads, namely graded algebras.

Definition 2.26 (Graded Algebras [MPS15]). Given a graded monad ((M,),n, (1™*)) on C
and n € Ny, an M,-algebra A consists of

o a family (Ag)o<k<n of objects Ay € Ob(C) called carriers, and

e a family (am’k)gngrkSn of morphisms a™" : M,,(Ar) — Amir,
satisfying

1. form <mn, a%™ona, =ida,,,

2. for m 47 +k <n, a™" o My (a"F) = a™ " oy

A morphism between M,-algebras A, B is a family (f;)o<r<n of morphisms fj : Ay — By,
such that, for m +k < n, ™% o My, (i) = fgr 0 a™F.

Of particular interest are graded semantics built around depth-1 graded monads, which have
compositionality properties useful for defining trace logics [MPS15, Section 8].

Definition 2.27 (Depth-1 Graded Monads [DMS20]). A graded monad ((M,),n, (u™)) is
depth-1 if the below diagram is a coequalizer in the category of My-algebras for all X and
n € Ny:

Ml(ﬂgén) uﬁ(’n
My (Mo(Mn(X))) —= Mi(Mn(X)) —— Mi14n(X).
N (X)

On Set, it can be shown that a graded monad is depth-1 iff all its operations and axioms have
depth at most 1 [MPS15, Proposition 3.5].
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3 Graded Theories over Nominal Sets

We will start by defining a concept of terms over nominal sets, which we will then use to
define the notion of a graded theory over nominal sets. We will then show that every such
graded theory induces a graded monad over Nom and that this graded monad is depth-1 if the
operations and equations in the theory are all depth-1 (for a reasonable definition of depth).

The syntax and semantics defined in this chapter are inspired by previous work [Gab08], but
with some notable differences: While Gabbay uses a plain set of variables and a set of freshness
assertions as the context, we will just use a nominal set of variables and use that set as the
“context”. Furthermore, instead of defining a free atom as a standalone term and bound atoms
as prefixes, we generalize this to operations taking a free or bound atom — this allows us to
construct terms that are similar to regular bar expressions.

3.1 Syntax

Definition 3.1 (Graded Signatures). A graded signature X is a tuple consisting of three
disjoint sets:

e a set Y of pure operations,

e a set Y of free operations, and

e a set X of bound operations,
along with an arity ar(f) € Ny and a depth d(f) € Ny for each operation f € ¥y U X¢ U Xp,.
We will write f/n € ¥g if f € ¥y and ar(f) = n, and similar for ¥ and 3.

Definition 3.2 (Nominal Terms). Given a nominal set X of variables and a graded signature
Y., define a nominal ¥-term (over X) as

tu=a| f(tr,...,tp) | a.g(ti,... tg) | va.h(ty,... . t,),

ranging over all x € X, a € A, f/p € X, g/q € ¢, and h/r € 5.

Definition 3.3 (Uniform Depth). A nominal ¥-term ¢ over a nominal set X of variables has
(uniform) depth n € Ny iff

e t=xforze X and n=0.

o t= f(t1,...,tp), where ti,...,t, all have uniform depth n/, and n = n' + d(f).

e t=a.f(t1,...,tp), where t1,...,t, all have uniform depth n’, and n = n’ + d(f).

o t=va.f(t1,...,tp), where t1,...,1, all have uniform depth »n’, and n = n’ + d(f).
We define Termy, ,(X) to be the set of ¥-terms over variables X with uniform depth n.

Note that if an operation ¢ has arity ar(c) = 0 (meaning that it is a constant), it has uniform
depth n € Ny for all n > d(c).
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It follows directly from this definition that terms with uniform depth > 0 may never be just
variables. However, a term with an operation may have uniform depth 0 if the operation is
depth-0.

Definition 3.4 (Uniform Substitution). Given nominal sets of variables X,Y", a depth [ € Ny,
and a graded signature 3, a (uniform) substitution is a function o : Y — Termy ;(X).

Its application (-)o : Termy, ,,(Y) — Termy; ;,,1;(X) is recursively defined as

xo = o(x),
(f(t1,...,tp))o = f(tio,..., tp0),
(a.f(t1,....tp))o = a.f(tio,...,tp0),
(va.f(t1,...,tp))o =va.f(tio,...,ty0).

Definition 3.5 (Permutation Action on terms). Given a nominal set X of variables, a depth
m € Ny, and a graded signature X, we recursively define a permutation action for m € Perm(A)
on Termy; p,(X) with

T =T*Z,
7(f(t1,...,tp)) = f(mty,... 7tp),
m(a.f(t1,...,tp)) = w(a).f(7t,... , 7tp),
m(va.f(ti,..., tp)) = vm(a).f(7ty,..., 7ty),

where x denotes the permutation action on the nominal set X. Equipped with this permutation
action, Termy, ,(X) is a nominal set.

3.2 A Derivation System

We proceed to define the concept of a graded theory for nominal sets similar to prior works for
other categories [FMS20].

Definition 3.6 (Equations). Given a nominal set X of variables, a depth-n Y.-equation (over
X) is a pair (t,u) € Termy ,(X)?, denoted as X b, t = u. When the depth of (¢,u) is not
important, we often speak of ¥-equations.

Definition 3.7 (Graded Theories). A graded theory T' = (3, E) consists of a graded signature
> and a class of Y-equations F, referred to as axioms.

Definition 3.8 (Derivations). Given a graded theory T' = (3, E), let derivable equations be
inductively defined by Figure 3.1.

The (ax,—s) rules also include that we implicitly close the class of axioms under permutations.
We furthermore require that the substitution o is ”derivably equivariant” (a notion formalized
below). This is to ensure that derivable equality is an equivariant relation.

Definition 3.9 (Derivable Equivariance). Given a graded theory T' = (X, E'), a uniform sub-
stitution o : Y — Termy;(X) is derivably equivariant if

X bk mo(x) = o(mx)

is derivable for every x € Y and every m € Perm(A).
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Xbkp,u=t Xkpt=v Xbkp,v=u

(trans)

(refl)

(symm)

Xtox==x Xkpt=u Xkpt=u
Xl—mti:ui \V/’ie{l,...,p}
(congy) (f/p € %o)
’ X}_m-i-d(f) f(t17"'7tp):f(ulv"'vup)
Xbpti =y \V/’iE{l,...,p}
(conga.5) (f/p € Xf,a €A)
! X I_'m-i-d(f) a'f(th cee atp) = a'f(ula s 7up)
Xboti =y \V/iE{l,...,p}
(congua.f) (f/p € Xp,a €A)
"X Fogdcr) va-f(t, - tp) = vaf(ug, .o up)
X+ = A4 P A Y
(axr=s 1 mo(2) = o(ma) ™ € Perm(A), @ € (YF,r=s€ETecPerm(A))
X by (7)o = (18)0
i Xbknt, = b)uy; Vied{l,...,
(permy) i (a )u ! { p} (f/p € Yp,a,b € Av a 7& b)

X Fpgapy va-f(tr, ..o tp) = vb.f(u, ..., up)

Figure 3.1: System of rules for deriving equations for a graded theory T' = (3, E).

Lemma 3.10. Let T = (X, E) be graded theory. If o : Y — Termy, ;(X) is derivably equivariant,
then X b4 m(to) = (wt)o can be derived for every t € Termy, ,,(X) and m € Perm(A).

Proof. By induction on t.

e Fort=x with x € X: Since n(to) = mo(z) and (nt)o = o(wz), it follows directly from
the assumption that X ; w(to) = (nt)o is derivable.

o Fort= f(ti,...,t,) with f/p € o, t1,...,tp, € Termy ,,y(X), and m = m’ + d(f): By
inductive hypothesis, we can derive X +,,» 7(t;jo) = (nt;)o for every i € {1,...,p}. By
applying (congy), we get X b, f(m(t10),...,7(tp0)) = f((7t1)o, ..., (7wty)o). Finally, we

know that
7T(t0') = W(f(th s 7tp)0)
=7n(f(tio,...,tp0)) by Definition 3.4
= f(n(ti0),...,7(ty0)) by Definition 3.5,
and

(rt)o = (n(f(t1,...,tp)))o
= (f(ntr,...,7mtp))o by Definition 3.5
= f((nt1)o, ..., (7ty)0) by Definition 3.4,

proving the statement.

o Fort=ua.f(t,...,tp) and t =va.f(t1,...,t,): Analogous to the above case.
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Proposition 3.11. Let T' = (X, E) be a graded theory and t,u € Termy, ,,(X). If X b, t =u
is derivable, then X b, mt = mwu is derivable for every m € Perm(A).

Proof. By induction on the derivation of X F,, t = u.

o For (refl): We know that t = u =z € X and m = 0, and thus 7t = 7z = 7u. It follows
from (refl) that X ko 7t = 7u.

o For (symm): We know that X t,, u =t is derivable and thus, by inductive hypothesis,
X b mu = 7t. It follows from (symm) that X b, 7t = 7u.

o For (trans): We know that, for some v, X t,, t = v and X F,, v = u are derivable. By
inductive hypothesis, it follows that X +,, 7t = tv and X +,, 7v = 7u. It follows from
(trans) that X F,, 7t = mu.

o For (congs): We know that t = f(t1,...,tp), u = f(ur,...,up), and X v t; = uy
is derivable for all ¢ € {1,...,p} with m = m’ + d(f). By inductive hypothesis, it
follows that X b, 7t; = mu; for all ¢ € {1,...,p}. It follows from (congy) that X F,,
f(mty,...,wty) = f(mwuy,...,muy). Finally, by applying Definition 3.5, we get X F,,
w(f(t1, ..., tp)) = w(fur,...,up)).

o For (congq¢): We know that t = a.f(t1,...,tp), u = a.f(ur,...up), and X F, t; = u;
is derivable for all ¢ € {1,...,p} with m = m/ + d(f). By inductive hypothesis, it
follows that X ., mt; = mu; for all 7 € {1,...,p}. It follows from (cong,(, ¢) that
X b w(a). f(nte, ..., wty) = w(a).f(mu1,...,mu,). Finally, by applying Definition 3.5,
we get X b, w(a.f(t1,...,tp)) = m(a. f(u,...,up)).

o For (congyq.f): Analogous to the above case.

e For (az,—s): We know that Y +, r = s € E and that ¢ = (7r)o,u = (7s)o for a
derivably equivariant substitution o : Y — Termy, ;(X) with m = m’+[ and a permutation
7 € Perm(A). By applying (ax,—s) with the permutation n7, we get Y t,, (n7r)o =
(r7s)o. Since, by assumption, o is derivably equivariant, it follows from Lemma 3.10 that
Y by w((7r)0) = w((7s)0) is derivable.
o For (permy): We know that t = va.f(t1,...,tp,) and u = vb.f(u1,...,up), where a#u;
and X b, t; = w; is derivable for each i € {1,...,p} with m = m/ + d(f). Furthermore,
a # b. By inductive hypothesis, we know that X t,,, 7t; = w(a b)u; is derivable for each
i, where m(a b)u; = (w(a) 7(b))(7wu;). Since 7 is a bijection, m(a) # w(b). In addition,
since supp is equivariant, it follows that m(a)#mu,;. Thus, we can apply (permy) and get
X bmovm(a). f(t, ... tp) = vm(b). f(ur, ..., up).
O

3.3 Nominal Algebras and Models

Definition 3.12 (Nominal Algebras). Given a graded signature ¥ and a depth n < w, a
nominal (3, n)-algebra A consists of

a family (A;)o<i<n of nominal sets, called carriers,

for f/p € X with m € No,m + d(f) < n, an equivariant function fa,, : Al — Apia(s),

for f/p € ¥ with m € No, m+d(f) < n, an equivariant function fa,, : Ax Ab, — Aptd(f)s

for f/p € Xy with m € No, m~+d(f) < n, an equivariant function f4 ,, : [A]Ah, — Apntd(f)-

A morphism between (X,n)-algebras A, B is a family (h;)o<i<n of equivariant functions
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h; : A; — B; satisfying the following properties:
1. For f/p € ¥y and z1,...,2, € A,
Ponracr)(fam(zi, - 2p)) = fBm(hm(z1), s hin(p))-
2. For f/[pe¥f,ac A, and z1,...,2p € Ay,
Pontacp)y(@-fam(T1, .. 2p)) = a fBm(hm(21), - - o hin(2p)-)
3. For f/peXp,a€ A, and z1,...,x, € Ay,
hm+d(f)(Va-fA,m($1, s p)) = va. fBm(hm (1), ... hm(2p)).

We define Alg(X, n) to be the category of nominal (X, n)-algebras and the morphisms between
them.

Intuitively, one can think of the elements in A; as terms evaluated up to depth 3.

Definition 3.13 (Evaluation Map). Given a nominal (X, n)-algebra A, a base depth k € Ny, k <
n, and an equivariant environment ¢ : X — Ay, the evaluation map [}, : Termy ,,(X) —
Agym of depth-m terms with & + m < n is defined recursively by

[z]6 = (=),
LF (s tp)nracry = fakem ([l - - [pln),
la-f(t1, - tp)mracry = faktm(a, [talm, - - [Ep]im),
[va.f(te, . tp)lmtacs) = Faktm (@) ([t - - [Ep]im))-

Furthermore, A satisfies a Y-equation X +,, t = w iff for every environment ¢ : X — A; with
k +m < n, the equality [t]:, = [u]4, holds.

Lemma 3.14. Let A be a nominal (X,n) and v : X — Ay an equivariant environment. Then
the evaluation map [-]%, is equivariant.
Proof. Let t € Termy, ,,(X) and 7 € Perm(A).
We will prove [nt]:, = 7[t]4, by induction on ¢.
o Fort=z withx e X:

[7t]5, = Imwz]o

= (mx) by Definition 3.13

= mu(x) because ¢ is equivariant
= n[z] by Definition 3.13

= 7[t];,-

o Fort= f(t1,...,tp,) with f/p € Xo, t1,...,t, € Termy ,,y(X), and m =m' + d(f):
[l = T (f (trs s ) T agry

= [f(mtq,... 77Ttp)ﬂ;n/+d(f) by Definition 3.5

= fam ([mtaliys - [7tplm) by Definition 3.13

= fam (7[ti]is - Tltplh) by inductive hypothesis
=7(fam ([tilns - [Epli) because fa ., is equivariant
=mlf(t, - tp)liracy) by Definition 3.13

= m[t]s,.

23



o Fort=ua.f(t,...,t,) and t =va.f(t1,...,t,): Analogous to the above case.
O
Definition 3.15 (Models of Graded Theories). Given a graded theory 7' = (X, E') and a depth
n <w, a (T,n)-model is a nominal (X, n)-algebra satisfying every axiom in E.

We define Alg(T,n) to be the full subcategory of (T, n)-models in Alg(3,n).

We will first prove a lemma to describe the behavior of substitutions within an evaluation, which
we will then use to prove soundness of the derivation system.

Lemma 3.16 (Substitution Lemma). Let A be a nominal (X,n)-algebra, ¢ : Y — A an
environment, and o : X — Termy, ;(X) a substitution. If k : X — Ay with k(x) = [o(x)]] is
equivariant, then [to]:, = [t]5, for every term t € Termy 1, (X) with k+m +1 < n.

Proof. By induction on ¢.
e Fort=ux withx € X:

[to]rmr = [zali

= [[o'(gj)]]; by Definition 3.4
= k(z) by definition
= [z]§ by Definition 3.13

il L4
o Fort= f(ti,...,tp,) with f/p € Xo, t1,...,t, € Termy ,,y(X), and m =m' + d(f):

[to] s = 10 (s tp)) 0T a1

= [f(tio,... ,tpa)]]inurd(f)ﬂ by Definition 3.4

= fam+i+k([t10 ] s - - [tp0 ] 1) by Definition 3.13

= fam+iek([tlmr, -5 [tplmr) by inductive hypothesis
=[ft - tp)msacy by Definition 3.13

= [0,

o Fort=ua.f(t,...,t,) and t =va.f(t1,...,t,): Analogous to the above case.
]

Theorem 3.17 (Soundness). The derivation system given in Definition 3.8 is sound: If an
equation is derivable in the system, it is also satisfied by every (T,n)-model.

Proof. Let A be a (T, n)-model and X -, ¢t = u be derivable in Definition 3.8.

We will show that for every equivariant environment ¢ : X — Ay with k£ +m < n, it follows
that [t]%, = [u]4,, by induction on the derivation of X t,, t = u.

o For (refl): We know that t = u =z € X, and thus [t]}, = [z]%, = [u]s.-

o For (symm): We know that X t,, u = t is derivable and thus, by inductive hypothesis,
[ul = [t]5-

o For (trans): We know that, for some v, X t,, t = v and X F,, v = u are derivable. By
inductive hypothesis, it follows that [t]4, = [v]4, = [u]’,-
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o For (congs): We know that t = f(t1,...,tp), u = f(ur,...,up), and X by t; = u; is
derivable for all i € {1,...,p} with m = m/ + d(f). From this, we can compute

[t1 = Lt o) agy

= fam [ty - -5 [tpln) by Definition 3.13
= fam ([u]ynr, -5 [uplinr) by inductive hypothesis
=[flu, )l racp by Definition 3.13

= [ulin-

For (cong,.s) and (cong,q.r): Analogous to the above case.

For (ax.—s): We know that A satisfies Y b,y r = s with r,s € Termy, ,,(Y) (because it
is a (T,n)-model), and that ¢t = (77)o,u = (7s)o for a derivably equivariant substitution
0:Y — Termy;(X) and a permutation 7 € Perm(A).

Let k : Y — Apy be defined as k() = [o(x)];. We will first show that x is equivariant:
For m € Perm(A) and x € Y, we know that X F; mo(z) = o(wz) is derivable. It follows
that

k(mz) = [o(rx)]; by definition
= [ro(2)]; by inductive hypothesis
= mlo(z)]; by Lemma 3.14
= 7k(x) by definition.

With this, we can conclude that

[t]5 = [(77) )14

= [rr]n, by Lemma 3.16

=7[r]n, by Lemma 3.14

= 7[s]n because A satisfies Y -,y r =5
= [7s]n by Lemma 3.14

= [(7s)o ] 1y by Lemma 3.16

= [ull;-

For (permys): We know that t = va.f(t1,...,tp) and v = vb.f(u1,...,up), where atu;
and X b, t; = u; is derivable for each i € {1,...,p} with m = m/ + d(f). Since a # b
and, by equivariance of [-]¢ ,, a#[u;]:, for every i, it follows from Proposition 2.8 that

(a)(a b)([wrl, - - Tuplir) = ) ([walrs - - Tup]r)- (3.1)

It then follows by computation that

[t] = lva-f(ta, - tp) o racry

= fam (@) ([t - -5 [tplm)) by Definition 3.13
= fam ((@)([(a@ D)ur]yy, - - -, [(a b)upl;,)) by inductive hypothesis
= fam((a)((a )[[m]]m seees (@ ) [uplyn)) by Lemma 3.14
= fam (O)([ur]srs - - -5 [upli) by Equation 3.1
= [wb. f(u1, .. )]]m,+d( N by Definition 3.13

= [ulin-
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3.4 Free Models of Graded Theories

In the following section, we will fix a graded theory T' = (X, E'), a nominal set X, and a depth

n < w.

Let ~ be the relation defined as derivable equality in T i.e., t ~ u for t,u € Termy ,,(X) iff
X b t = u is derivable in T'. By Proposition 3.11, ~ is obviously equivariant.

Lemma 3.18. The relation ~ is a congruence relation.

Proof. We will show the required properties:

1. ~ is reflexive: We will show that X +,, ¢ = ¢ is derivable for all ¢ € Termy,,(X) by
induction on t.

2. ~is

For t =z with x € X: By applying (refl), we get X ¢ z = z.

Fort = f(ti1,...,tp) with f/p € Xo, t1,...,tp, € Termy .,y (X), and m = m’ + d(f):
By inductive hypothesis, we can derive X b,/ t; = t; for every i € {1,...,p}. By
applying (congy), we then get X b, f(t1,...,tp) = f(t1,...,tp).

Fort=a.f(t,...,ty) and t = va.f(t1,...,t,): Analogous to the above case.

symmetric: Let ¢,u € Termy ,,(X) with u ~ ¢. By definition, we can derive X +,

u = t. Applying (symm), we get X t,, t = u, and thus t ~ u.

3. ~ is

transitive: Let t,u,v € Termy ,(X) with ¢ ~ v and v ~ u. By definition, we can

derive X F,, t = v and X t,,, v = u. Applying (trans), we get X b, t = u, and thus

t~u.

4. ~ is a congruence: By application of (congy), (congg f), and (cong,,. f) respectively.

O]

This allows us to partition Termsy; ,,,(X) into equivalence classes. We will denote the equivalence
class of a term ¢t € Termy ,,,(X) as [t],, € Termy,,(X)/~. The permutation action on the
equivalence classes is defined by applying the permutation to the elements of the equivalence

class.

Definition 3.19. The (X, n)-algebra F'(X) is defined as follows:
o (F(X))i = Termyg(X)/~,
o frex)m([talm, - [tplm) = [f(t1, - tp)meacr) for f/p € Xo,
o frex)m(as tilm, - [tplm) = [a.-f(trs - - tp)lmyacy) for f/p € X,
o frex)ymUa)([talms s [tplm)) = va.f(t1, .-, tp)lmyacy) for f/p € Zp.

Lemma 3.20. The above description of F(X) is indeed a well-defined nominal (%, n)-algebra,

in that

1. fr(x)m is well-defined and equivariant for all f € Xg.

2. [r(x)m s well-defined and equivariant for all f € .

3. [r(x)m s well-defined and equivariant for all f € By,

Proof. We will prove each statement individually:
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1. To show well-definedness, let [t;],, = [u;]m for all ¢ € {1,...,p}. It follows from (congy)
that f(t1,...,tp) ~ f(u1,...,up) and thus

fF(X),m([tl]mn B! [tp}m) - [f(tlv s 7tp>]m+d(f)
= [f(ur, - wp)lmrdcp)

= reo)m(lulm, s [uplm)-

For equivariance, let m € Perm(A). Then we get

fre)m(Tltlm, - ltplm) = freo)m([Ttlms - - - [Ttp]m) by Proposition 2.12
= [f(mte, ..y Ttp)lmracs) by definition
= [r(f(t1, - tp))mtacr) by Definition 3.5
@, tp)mtacr) by Proposition 2.12

[ f
(fF(X) ([t1)m, - -+, [tplm)) Dby definition.

2. Analogous to the above case.

3. To show well-definedness, let (a)([t1]m,-- -, [tp)m) = (0)([Uilm, - - -, [up]m). It follows from
Proposition 2.8 that we only need to consider two cases:

If a = b, then [t;];m = [ui]m for every i € {1,...,p} and the statement follows similar to
the above case.

Otherwise, a#[u;]m and [t;]m = (a b)[w;]m, for every i € {1,...,p}. By Corollary 2.15, we
know that there is some @; € Termy ,,(X) with u; ~ @; and a#4; for every 4. It follows
from Proposition 2.12 that [¢;],, = (a b)[U]m = [(a b)t;]m for every i. Thus, we get

fF(X)Vm(<a>([t1]m, co [tplm)) = e f(ts o ) mrd(s) by Definition 3.19
= [vb.f (a1, - 7“p)]m+d by applying (permy)
= [vb.f(ug,... ,up)]m+d by applying (cong,. f)
= frx)m((0)([ut]ms, - - - [up]m)) by Definition 3.19.

Proving equivariance is analogous to the above case.

O]

Definition 3.21 (Canonical Environment). The canonical environment ny for F(X) is
defined as

nx : X = (F(X))O,
nx(z) = [z]o.

Note that, by Proposition 2.12 and Proposition 3.11, nx is indeed an equivariant environment.

Lemma 3.22. Ift € Termy ,,,(X), then [t]i5 = [tIm.

Proof. By induction on t.
e Fort=ux with x € X: By definition, we get [t];5 = [z]¢* = nx(x) = [z]o = [t]m.
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o Fort= f(t1,...,tp,) with f/p € Xo, t1,...,t, € Termy ,,y(X), and m =m' + d(f):

[[t]]ﬂmX = [[f(tlv s 7tp) :]n)f—i-d(f)

= frooym ([0, - [Ep]) by Definition 3.13

= froym (w5 [Ep]) by inductive hypothesis
= [f(t1, - tp)loracr) by Definition 3.19

= [tm-

o Fort=ua.f(t,...,tp) and t =va.f(t1,...,t,): Analogous to the above case.

Proposition 3.23. The above definition of F(X) is a (T,n)-model.

Proof. Since we know that F'(X) is a nominal (X, n)-algebra (by Lemma 3.20), we only need to
prove that F'(X) satisfies every axiom in E.

Let Y, t =u € E be an axiom and ¢ : Y — (F(X)) an equivariant environment. We will
show that [t]%, = [u]s,.

Fix a splitting ug, : (F(X))r — Termy ;(X) of the canonical projection (in that [-] o uj = id)
and let ¢ = uy o ¢. This definition of o yields a derivably equivariant substitution: Let x € Y
and 7 € Perm(A). Then

[o(mx)]k = [uk(e(mx))]k by definition of o
() because [-|; o up = id
= mu(x) because ¢ is equivariant
= mlug(e(x))]k because [-|; o up = id
= 7o (z)]k by definition of o
= [mo ()] by Proposition 2.12,

and thus X by wo(x) = o(mwz) is derivable. By applying (ax¢—,) with 7 = id, we then get
X bk to = uo.

Since we have

v(z) = [ug(e(x))]k because [-]i o ug = id
= [o(2)]x by definition of o
= [[O'(CL‘)]]ZX by Lemma 3.227

we can conclude that

[l = [[tgﬂszik by Lemma 3.16
= [to]m+ by Lemma 3.22
= [uo]m+k because X b,k to = uo
= [uo nmXJrk by Lemma 3.22
= [ul;, by Lemma 3.16.
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3.5 Inducing a Graded Monad

In this section, we will show that the definition of F(X) from the previous section yields a
functor which is a left adjoint to the forgetful functor Alg(7’,n) — Nom. It will then follow from
abstract nonsense that every graded theory over nominal sets induces a graded monad.

We once again fix a graded theory T'= (3, E') and a depth n < w.

Definition 3.24. We define the forgetful functor G : Alg(T,n) — Nom with

Definition 3.25. We define the free functor F' : Nom — Alg(T,n) with F/(X) as given above
and for every f € Nom(X,Y)

(F(f)i([t]:) = [togli,

with the substitution o = (X Ly Termy o(Y')).

Lemma 3.26. The above description of F is indeed a well-defined functor, in that
1. F(f) is a well-defined morphism between (T, n)-algebras for every f € Nom(X,Y),
2. F(idx) =id for every X € Ob(Nom)),
3. F(go f)=F(g)o F(f) for every f,g € Nom(X,Y).

Proof. We will prove the statements individually:
1. Let f: X — Y be an equivariant function.

We define an environment x : X — (F(Y))o with k(z) = [os(z)]{*. Note that x is
indeed equivariant: For every m € Perm(A), we have k(rz) = [f(m2)]* = [rf(2)]* =
7[f(2)]§* = mr(z) by Lemma 3.14 and equivariance of f. It then follows that, for every
[t]m € (F(X))m, we have

(F(f)m([tlm) = [taf]m by definition
= [tos]x by Lemma 3.22
= [tls, by Lemma 3.16.

Thus, we can conclude well-definedness and equivariance from Theorem 3.17 and Lemma 3.14.

To show Definition 3.12 (1), let g/p € ¢ and [ti]m, - .-, [tp]lm € (F(X))m. Then

(F(f))m+dig) (9rx)m[Elms - - [Eplm))
= (F(f))m+d(g)([g(tla S 7tp)]m+d(g)) by Definition 3.19
= [(g(t1,...,tp))oy] by definition
= [Q(tlaf, e ,tpr)] by Definition 3.4
- gF(X)m([tlUf}ma ooy [tpoflm) by Definition 3.19
= 9rx)m((F(f)m([tr]m), - (F())m([tp]m)) by definition.

(2) and (3) can be shown with a similar argument.
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2. Let [t] € (F(X))m.

As seen in (1), we have (F(idx))i([t]m) [t]e, for k : X — (F(X)) with k(z) =
lidx (2)]¢* = [2]3* = nx(z). Thus, K = nx and it follows from Lemma 3.22 that

(F(idx))i([tlm) = [t}m = id([t]m)-

3. Let t € Termy,,,(X). We will show that toy.f = (tof)oy by induction on t.

o Fort =z with x € X: By definition, we get
toger = 0gor(x) = g(f(2)) = 0g(f(2)) = (f(x))og = (0())og = (tof)oy.

o Fort= f(t1,...,tp,) with f/p € Xo, t1,...,t, € Termy ,,y(X), and m =m' + d(f):

togor = f(t10gof,- - tpOgof) by assumption
= f((tiog)og, ..., (tpof)oy) by inductive hypothesis
= (f(tiof, ..., tpof))og by Definition 3.4
= ((f(t1,...,tp))of)og by Definition 3.4
= (toy)og by assumption.

o Fort=ua.f(ti,...,t,) and t = va.f(t1,...,t,): Analogous to the above case.
With this, we can conclude that

O]

Theorem 3.27. The functor F is a left-adjoint to the forgetful functor G with the unit n as
defined in Definition 3.21 and the counit € given by

€A F(AO) — A,
(en)illt)) = [,

Proof. We will first show that €4 is indeed a well-defined morphism between algebras for every
A € Ob(Alg(T,n)):
o Well-definedness and equivariance follow directly from Theorem 3.17 and Lemma 3.14.

o To show Definition 3.12 (1), let f/p € Xo and [t1]m, ..., [tp]m € (F'(Ap))m. Then

(eA)madcr) (Frcag)m[Elms -5 [Eplm))

= (EA)md(p)[f(E1s - tp)lmtd(s)) by Definition 3.19
= [f(t1,...,tp) i,?ﬁd(f) by definition
= fA,m([[tl]]ifri” cey [[tp]]i%) by Definition 3.13
= fam((a)m([t1]m); - -5 (a)m([tplm)) by definition.

o With a similar argument, one can also show (2) and (3).
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Next, we will show that 7 is indeed natural. So let X,Y € Ob(Nom), f € Nom(X,Y), and
x € X. Let oy be defined as in Definition 3.25. Then

ny (f(z)) = [f(z)lm by Definition 3.21
= [of(x)|m by definition of o
= [z0f]m by Definition 3.4
= (F(f))m([=]) by Definition 3.25
= (F(f))mnx(z)) by Definition 3.21.

To show that ¢ is also natural, let A, B € Ob(Alg(T,n)) and h € Alg(T,n)(A, B). We will show
EB)m((F(ho))m([tIm)) = hm((ea)m([t]m)) for every t € Termy; ,(Ap) by induction on ¢.

o Fort=x withx € Ay:

(eB)o((F(ho))o([z]o)) = (eB)o([xohe]0) by Definition 3.25

= (eB)o([ho(x)]o) by Definition 3.4

= [ho(z)] by definition of ¢

= hp(x) by Definition 3.13

= ho([z]i) by Definition 3.13

= ho((ea)o([z])) by definition of e.

o Fort= f(ti,...,tp,) with f/p € Xo, t1,...,t, € Termy ,,y(X), and m =m' +d(f):
(€B)m((F(ho))m([f(t1; - tp)lm))

= (€B)m((F(ho))m(fr(ae)m ([trlnrs - - - [tplmr)) by Definition 3.19
= (€B)m(fr(Bo),m (F (7o) ([t1]mr ), - - -, (F'(h0))r ([tp]mr))) by Definition 3.12 (1)
= B ((€B)m ((F(ho))ny ([t1)m)), - - - (EB)m (F'(Ro))m ([tpm))) by Definition 3.12 (1)
= fBm/ ("o ((EA)m ([t1] )5 - - s By ((€4) ey ([Ep) ) inductive hypothesis
= hin(fam ((€a)m ([t1]m), - (€A)m ([tp]mr))) by Definition 3.12 (1)
= hun((EA)m (fr(ag)m (E)mrs - - [tplmr))) by Definition 3.12 (1)
= hn((eA)m([f(t1s - tp)]m)) by Definition 3.19.

o Fort=ua.f(t,...,tp) and t =va.f(t1,...,t,): Analogous to the above case.
Finally, we will prove the adjunction using the counit-unit equations

ldp = eF o Fn, (3.2)
ldg = Ge onG.

Let A € Ob(Alg(T,n)) and X € Ob(Nom).

For Equation 3.2, we will show (¢ p(x))m((F'(nx))m([tlm)) = [t]m for every t € Terms, ,,(X) by
induction on ¢.

o Fort=x withx e X:

(erx))o((F(nx))o([z]o)) = (erx))o([Tomy o) by Definition 3.25
= (ep(x))o([[z]oo) by Definition 3.4
= [Hx]o]]iéj by definition of
= [z]o by Definition 3.13.
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o Fort= f(t1,...,tp,) with f/p € Xo, t1,...,t, € Termy ,,y(X), and m =m' + d(f):

(5F(X))m((F(77X))m([f(t17 e 7tp)]m))
= (by Definition 3.19)
(€r(0) )m (F(0x))m (frx)m ([Ealns - - [tplme)))
= (by Definition 3.12 (1))
(erx))m(Fr )y m (Fx))m (Elm)s - -+ (F 1)) ([Eplmr)))
= (by Definition 3.12 (1))
Frx)m ((€px))me ((F'(0x))me ([E1]mr))s - - - (€p(x) ) (F () ) ([Ep ) )))
= (by inductive hypothesis)
fF(X),m’([tl]m’v s [tp]m’)
= (by Definition 3.19)
(f(t1, . tp)]m.

o Fort=ua.f(ti,...,t,) and t =va.f(t1,...,t,): Analogous to the above case.
For Equation 3.3, let z € Ag. Then we have

(e4)o(na,(z)) = (a)o([z]o) by Definition 3.21
= [z]i¢ by definition of €
=z by Definition 3.13.
With this, it follows that (¢,7) : FF 4 G. O

This adjunction can be used to show that every graded theory induces the following graded
monad over Nom:

Definition 3.28. Given a graded theory T' = (¥, E), the graded monad ((My)neng, 7, (11™) 5 keng )
over Nom induced by it is defined as

M,, : Nom — Nom,
M (X) = (F(X))n = Terms ,(X)/~,
M (f)([tln) = (F(f))n = [tofln,

nx : X — My(X),
nx(z) = [zo,

A My (Mip(X)) = My (X),
R ([thn) = L1035

where o is defined as in Definition 3.25.

Corollary 3.29. The above definition is indeed a graded monad.

Proof. We set n = w and use the adjunction F' 4 G provided by Theorem 3.27.
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Let x : Ny x Alg(T,w) — Alg(T,w) be the strict action of the discrete monoidal category
(Ng, +,0) on Alg(T,w) defined as

nx ((Ai), (fai)) = ((Aitn), (fasitn)),

We can now conclude [FKM16, Section 3] that there is a graded monad ((M,,),n, (u™*)) with

Mp(X)=GnxF(X))=(nxF(X))= (F(X))n, = Termy ,(X)/~,
My (f)([tln) = Ginx F())([t]n) = (nx F(f))o([t]n) = (F'(f)n([tln) = [tos]n,

1 being the unit of the adjunction and

W58 - Mo (M (X)) = Gl s F(Gk % F(X)))) = Glnx (kx F(X))) = Myir(X),
(1) = G x e ([Hn) = Epere)n([81a) = [

nk »

Intuitively, u collapses” the inner equivalence classes in a term:

Lemma 3.30. Let T = (X, E) be a graded theory and ((M,),n, (1)) be the graded monad
induced by it. If o : Mp(X) — Termyx(X) is a splitting (in that [Joo = id) and t €
Terms, ,(Mg(X)), then u%([t]n) = [to]nrk-

Proof. First note that, for [u], € My(X), we have

HU([U]k)]]ZX = [o([u]k)]x by Lemma 3.22
= id([u]x) because [] o 0 = id.

It then follows that, for t € Termy; ,(My(X)),

R ([t],) = [t]@ by Definition 3.28
= [to] %, by Lemma 3.16 with x = id
= [to]pn+k by Lemma 3.22.

O

We can show that substitutions can be expressed as first substituting variables with variables
of equivalence classes of terms followed by a multiplication:

Lemma 3.31. Let T = (X, E) be a graded theory and ((M,),n, (™)) be the graded monad
induced by it. Ift € Termy ,(Y) and o : Y — Termy (X)), then [to]n,1r = pc?(’k([tﬁ]n), where
g :Y — Termy o(My(X)) is defined as 6(x) = [o(z)])-

Proof. By induction on ¢.

o Fort=x withxeY:

[tolnik = [o(2)]k = 7(2) = [5(2)]§ = 1Y ([5(2)]0) = u" ([t7])-
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o Fort = f(ti,...,tp) with f/p € Xo, t1,...,tp, € Termy ,(Y), and 1 = m + d(f): By
inductive hypothesis, we know that [t;o],+r = ,u;?’k([ti&]m) for every i. It then follows

that
[to]psr = [f(tio, ..., tp0) ]tk by Definition 3.4
= frx)mek([E10]maks - - -5 [Ep0lmak) by Definition 3.19
= frx) m+k( F([t15]m), - - 2" ([tpalm)) by inductive hypothesis
= frex)mak([t1G], . ., [t6]9) by Definition 3.28
= [f(t15,...,t,0)]9 by Definition 3.13
=puy ([t 6]n) by Definition 3.28.

o Fort=ua.f(t,...,t,) and t =va.f(t1,...,t,): Analogous to the above case.

We will also show the following lemma for operations:

Lemma 3.32. Let T = (X, E) be a graded theory and ((M,),n, (u™)) be the graded monad
induced by it. Forty,...,t, € Termy ,(X):

o If f/p €S0, then [f(tr, - t)uracr) = 157" (U ([alns - lpln)acr)-
° If f/p € X, then [a'f(tb s 7tp)]n+d(f) - N)((f)m([a'f([tl]m R [tp]n”d(f)-

« If f/p€ S, then [va.f(tr, ..., tp)lnras) = 1" (Waf([t]ns - - [tph)]acp) -

Proof. We will show the first statement by simple computation:

B U s lpldlacry = U s - )it by Definition 5.28
= freona([tlnls, - - [tlal§) by Definition 3.13
= freom([tiln, -5 [tpln) by Definition 3.13
= [f(t1, - tp)lnracs) by Definition 3.19.

3.6 Depth-1 Graded Monads

We will first define a notion of depth-1 graded theories over Nom.

Definition 3.33 (Depth-1 Graded Theories). A graded theory T' = (X, E) is depth-1 if all its
operations and axioms are at most depth-1.

We can then show that every such graded theory induces a graded monad that is depth-1
according to Definition 2.27.

Fix a depth-1 graded theory T = (X, E) and let ((M,,),n, (u™)) be the graded monad induced
by it as described in Definition 3.28.

The monad multiplication uk’-” collapses depth-1 terms with embedded depth-n terms into terms
of depth 1+ n. Conversely, we can split a depth-1+ n term into such a layered term, given that
all operations are at most depth-1.
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To do this, let s% : Termy 14, (X) — Termy; 1 (M, (X)) be defined as

SY(ftry . stp) = F(s%(t1), ..., s%(tp)) if f/p € Yo and d(f) =0,
n(f(tl,...,t )) :f([tl]na"'7[tp]n) if f/pE 20 and d(f) 1
and similarly for 3¢ and Xp.

Lemma 3.34. The function s% is equivariant.

Proof. Let m € Perm(A). We will show s (7t) = ws'%(t) for all t € Termy, ;4, by induction on
t, only considering cases where ¢ has at least uniform depth 1.

o Fort= f(t1,...,tp) with f/p € Xy, t1,...,t, € Termy ,(X), and 1+n = m+d(f): Since
all operations are at most depth-1, we only have to consider two cases:

If d(f) =0, then

s (mt) = s (f(mtq, ..., 7tp)) by Definition 3.5
= f(sx(mt1),...,s%(7tp)) by definition of s’
= f(ws'x(t1),...,ms%(tp)) by inductive hypothesis
=7mf(s%(t1),...,s%(tp)) by Definition 3.5
= s’y (1) by definition of s'.
If d(f) =1, then
s (mt) = s (f(mt1, ..., 7tp)) by Definition 3.5
= f([mtl]n, o [mtpln) by definition of s%
f(rltiln, ..., mtpln) by Proposition 2.12
= TI'f([t1]n, S [tpln) by Definition 3.5
= 7s'y(t) by definition of s'y.

o Fort=ua.f(t,...,tp) and t =va.f(t1,...,t,): Analogous to the above case.
]

Of course, where we split exactly is chosen arbitrarily: Here, we use the outermost term inside a
depth-1 operation, however this term could have more depth-0 operations we could include. We
will see that this doesn’t matter in the context of morphisms satisfying the universal property
of a coequalizer. To do this, we will first show some general properties of such morphisms:

Lemma 3.35. Let (Q,h) be an My-algebra and q : Mi(M,(X)) — Q a morphism between
My-algebras such that q o M (Mgé") =gqo ,u}\;[?l(x).

1. Ifty,...,t, € Termy 1 (M (X)), then
o q([f(tr,- - 1)) = h(f(q([t]r), - - al[Ep]1))]o) for f/p € 3o, d(f) =0,
q([a-f(tr, ... tp)l1) = h(la-f(q([ta]1), - - -, a([tp]1))]o) for f/p € X, d(f) =0,
« q(va.f(tr,... . tp)) = h([va.f(q([t1]1), -, a([tp]1)]o) for f/p € B, d(f) = 0.
2. Ift1,...,tp, € Termy o(M, (X)), then
(%

o q([f(tr, - tp)l) = a([F (X" ([ta]o)s -, uX" ([EJo)) ) for f/p € Do, d(f) =1,
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o qlla-fltr,- tp)l) = alla-F (5" ([01)o)s - X" (itplo))11) for f/p € B, d(f) = 1,
)

o qllva.f(tr,....tp)l1) = allva-f (15" ([0)o), - u¥" (tplo))) for f/p € Sp, d(f) = 1.

3. Ift € Termyo(Y) and o : Y — Termy 14,(X), then q([s%(to)]1) = h([tdlo) for T : Y —
Termy, (Q) with o(z) = q([s% (o (2))]1)-

4. If t € Termy1(Y) and o : Y — Termy ,(X), then q([s%(to)1) = q([ta]1) fora : Y —
Termy, o (M, (X)) with 6(z) = [o(x)]n.

Proof. Since ¢ is a morphism between the My-algebras (Ml(Mn(X)),u(]]\}[ln(X)) and (Q,h), we
know that

ho My(q) = qO/“L(J)\;[ln(X)‘ (3.4)

We will proceed to show each statement individually:

1. We will only show the statement for >y, the arguments for the others are completely
analogous.

By computation, we get

g([f (b1, o)1) = a(py, oy (L (s [Ep]0)]0)) by Lemma 3.32
= h(Mo(q)([f([t1]1,-- -, [tp)1)]o)) by Equation 3.4
= h([f([ti)1,-- -, [tp]1)oglo) by Definition 3.28
= h([f(q([t1]1), - - - a([tp)1)]o) by Definition 3.4.

2. Once again, we will only show the statement for Y.

By computation, we get

q([f(tr, ..., tp)h) = Q( ([ ([ti)os - - -, [tplo)]1)) by Lemma 3.32
= Q(Ml( ) (Edos - - -5 [Eplo)]h)) by assumption
=q([f([t]o,---, [t ]O)U#g(n]l by Definition 3.28
— (UGS (o) o i (o)) by Definition 3.4

3. By induction on t.
o Fort=x withzeY:

a([s% (o)1) = a([[% (to) 1] by Definition 3.13
= q(u%(x)([[s}(w)mo)) by Definition 3.28
= h(Mo(q)([[s% (to)]1]o)) by Equation 3.4
= h([q([sx (c(x))]1)]o) by Definition 3.28
= h([a(x)]o) by definition of &
= h([ta]o) by Definition 3.4.

o Fort= f(t1,...,t,) with f/p € £9: We know that d(f) = 0 (because t is depth-0).

36



It then follows that

q([s% (to)]1)
= q([sx(f(tio,...,tp0))]1) by Definition 3.4
= q([f(s%(t1io),...,s%(tpo))1) by definition of s’
= W[ (B, - (5% o) Dlo) by (1)
= h([f(R([t17]0), - -, h([tpFl0))]0) by inductive hypothesis
= h(Mo(h)([f([t15]o, - -, [tpTlo)]o) by Definition 3.28
= h(ug ([f([t1510; - - - [tp)0)]o)) because (Q, h) is an My-algebra
= h([f(t10,...,tp0)]0) by Lemma 3.32
= h([ta]o) by Definition 3.4.

o Fort=ua.f(t,...,t,) and t =va.f(t1,...,t,): Analogous to the above case.
4. By induction on t.

e Fort = x with x € Y: This would imply that ¢ is depth-0, but we know that ¢ has
uniform depth 1.

o Fort= f(t1,...,tp) with f/p € ¥o: Since t has uniform depth 1, we have to consider
two cases:

For d(f) =0, we get

q([sk (to))1) = q([s% (f(tro, .., tpo))]) by Definition 3.4
= q([f(s% (ti0),... ,87)1((%0))]1) by definition of s’
= h([f(q([s (tr0)]1), -, a([s% (tpo)]1)]o) by (1)
= h([f(q([t1]1),- ., q([tpa]1)]0) by inductive hypothesis
= q([f(t10,...,tp0)]1) by (1)
= q([ta]1) by Definition 3.4.
For d(f) =1, we get
a([s% (to)l1) = a([sk (f(tro, ..., tpo))]1) by Definition 3.4
=q([f([t1o]n,-- -, [tpoln)]1) by definition of s’y
= q(lF (%" ([15)0), - -, 1% ([t,610)])1) by Lemma 3.31
=q([f(t10,...,tp0)]1) by (2)
= q([ta]1) by Definition 3.4.

o Fort=ua.f(t,...,ty) and t =va.f(t1,...,t,): Analogous to the above case.

With this, we can finally show the coequalizer property for ,uk” and thus the desired result.
Theorem 3.36. The graded monad induced by a depth-1 graded theory T = (X, E) is depth-1.

Proof. We will show that uﬁén is a coequalizer in the category of My-algebras for M; (,ugé”) and
um(X) as given in Definition 2.27 for all X € Ob(Nom) and n € Nj.

By Definition 2.23, we already know that ui}” o My (,ugé") = uk" o ,u}\;[?l(x).
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Now let (@, h) be an My-algebra and g : M;(M, (X)) — @ a morphism between My-algebras
such that go Ml(ugé”) =gqo MJI\X (X)" We now have to show that there exists a unique morphism

q: Mipp(X) = Q with go py" = q.

So let ¢ be defined as ¢([t]i+n) = q([s%(¢)]1). We will show that this definition satisfies our
requirements:

1. If 7 € Perm(A) and t € Termy, 11, (X), then

[wtlisn) = (% (7)) by definition of g
= q([ms (t)]1) by Lemma 3.34
= q(m[sx(t)]1) by Proposition 2.12 and Proposition 3.11
= mq([s"x(t)]1) by equivariance of ¢
= 71q([t]14n) by definition of §.

Furthermore, it follows by equivariance of s';, the canonical projection, and ¢, that
supp(q([t]1+n)) = supp(q([s’ (¢)]1)) < supp(?).

2. q is well-defined; i.e., if X 14, t = w is derivable, then ¢([t]i4n) = q([u]14n). We will
show this by induction on the derivation.

o For (refl): This would imply that ¢t = x for some = € X, however t has uniform
depth 1 4+ n, whereas = has uniform depth 0.

o For (symm): We know that X 14, u =t is derivable and, by inductive hypothesis,
we get q([u]i4n) = q([t]i1n)-

o For (trans): We know that X k14, t = v and X k14, v = u are derivable for some
v. Thus, by inductive hypothesis, we get ¢([t]i+n) = ¢([v]14n) = ¢([t]14n)-

o For (congs): We know that t = f(t1,...,t,), u= f(ur,...,up), and X b, t; = u; is
derivable for all 7 € {1,...,p} with 1 +n = m + d(f). Since the operations are at
most depth-1, we only have to consider two cases:

If d(f) =0, we get

q([thn) = q([s% (f(t1s- - 1)) by definition of g
= q([f(s%(t1),...,s%(tp)]1) by definition of s’
= h([f(a([sx (t)]1), - - - al[sk (tp)]1))]o) by Lemma 3.35 (1)
= h([f(@([tr)r4n)s -5 @([tp]ien)]o) by definition of ¢,

and similarly
q([u)1+n) = R([f(@([u1]14n); - - -, @[upl1+n)]o)-

The equality then follows by inductive hypothesis.
If d(f) = 1, then we get

q([tlin) = q([sx (f(t1,- - - 1)) by definition of ¢
=q([f([t1]n, - [tpln)]1) by definition of s’
=q([f([uiln, - [upln)]1) by assumption
= q([s"% (f(u1,...,up))) by definition of s’y
= q([u]14n) by definition of g.
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o For (cong,.f) and (cong,q¢): Analogous to the above case.

o For (az;—s): We know that Y +,, r = s € E with t = (7r)o and u = (7)o
for a derivably equivariant substitution o : Y — Termy;(X) and a permutation
7 € Perm(A). Since we have assumed T to be depth-1, we have to consider two
cases:

If r and s are depth-0, then [ = 1 + n. In this case, let ¢ : ¥ — Termy(Q) be
defined as

a(z) = q([o(2)]14n) = q([sX (o (2))]1)-
It then follows by Lemma 3.35 (4) that

q([t]14n) = a([sk ((rr)o)]1) = h([(77)5lo) and
A([ul14n) = a([sX ((Ts)o)]1) = h([(T5)T]0)-
Finally, we can show @ o (77)d = (75)7 using (ax,—s) by showing that & is derivably

equivariant: Let m € Perm(A) and = € Y. It then follows by inductive hypothesis
that

q(
q(

wo(z) = by definition of &

|
3
=
— E
8
=
—
+
S
~—

q([ro(2)l14n) by (1)
= q([o(72)]14n) by inductive hypothesis
=o(mx) by definition of 7.

If r and s are depth-1, then [ = n. In this case, let ¢ : Y — Termy (M, (X)) be
defined as ¢(x) = [o(x)],. It then follows by Lemma 3.35 (4) that

q([thn) = a([sx ((rr)o)1) = q([(rr)a]1) and
q([ul14n) = q([s% ((Ts)0)]1) = q([(Ts)a]1).
We can then derive Q o (7r)d = (75)d by once again showing that ¢ is derivably

equivariant: Let 7 € Perm(A) and € Y. Then n6 = nlo(z)], = [ro(z)], =
[o(mx)], by Proposition 2.12 and by assumption.

o For (permy): We know that ¢t = va.f(t1,...,tp) and v = vb.f(uy,...,up) where
a # b, a#tu;, and X b, t; = (a b)u; is derivable for all ¢ € {1,...,p}. Since the
operations are at most depth-1, we only have to consider two cases:

If d(f) =0, we get

q([t]in) = b(va.f(q([tr]14n), - - @([tpl14n))]o)  and
q([uli+n) = P(wb.f(q([ur]14n); - - 4([uplin))]o)

analogously to (congy). Furthermore, for i € {1,...,p}, we have
q([ti)i+n) = @([(a D)ui]i4n by inductive hypothesis
= (a b)q([ui]1+n) by (1),

and also a ¢ supp(q([ui]1+n)) C supp(u;) by (1). Thus, the equality follows by (perm).
If d(f) =1, we get

q([th+n) = q(va-f([trln, - [tpln)]1)  and
A([ulin) = q([vb-f([wr]n, - - - [up]n)]1)
analogously to (congs). Furthermore, for i € {1,...,p}, we have [t;], = [(a b)us], =

(a b)[u;], and a ¢ supp([ui]ln) C supp(u;) by assumption and Proposition 2.12. The
result then follows by (perm).

39



40

3. q: (Miyn(X), ,ug(H") — (@, h) is indeed a morphism between My-algebras:

First, note that equivariance follows from (1) and Proposition 2.12.
We will also have to show that h o My(q) = Go ug(H" So let [t]o € Mo(Miyn(X)).

Fix a splitting o : M14,(X) — Termy; 14 (X), in that [-];4p00 =id. Let & : M1, (X) —
Termy, o(Q) be defined as (x) = ¢(z) = ¢([o(x)]14n) = ¢([s% (o(x))]1).
It then follows that

h(Mo(q)([tlo)) = h([ta]o) by Definition 3.28 because 05 = &
= q([sk (to)]1) by Lemma 3.35 (3)
= q([to]1+n) by definition of ¢
= g " ([t]o)) by Lemma 3.30.

. q satisfies the given property; i.e., g o u;" =q. So let [t]y € M1 (M, (X)).

We fix a splitting o : M, (X) — Termy ,(X), in that [}, oo = id. Let ¢ : M,(X) —
Termy, o(M,,(X)) be defined as o(z) = [o(x)]1 = =.

It then follows that

a(u"([th)) = a([to]1n) by Lemma 3.30
= q([s% (to)]1) by definition of g
= q([ta]r) by Lemma 3.35 (4)
= q(M;(id)([t]1)) by Definition 3.28 because ojq = &
= q([th) by functoriality of M.

. If there is another such morphism ¢/, then ¢'([t];) = q([t]1) for every ¢ € Termy ; (M, (X)).

So assume that ¢’ : M14,(X) — @ is a morphism between My-algebras such that
¢ oy =q. (3.5)

We will proceed by induction on ¢, only considering cases where ¢t has at least uniform
depth 1.

o Fort= f(ti,...,tp) with f/p € Xo, t1,...,tp € Termy p,(X), and 1 +n=m+d(f):
Since all operations are at most depth-1, we only have to consider two cases:

If d(f) =0, then

¢ ([f(tr, - tp)]ign)

= ¢ (W ([f ([t tpl1)]o) by Lemma 3.32
= h(Mo(¢)([f([t1]1,- -, [tp]1)]o)) Dbecause ¢’ is a morphism between My-algebras
= h([f(d(ta]1),---,d ([tp]1)]o) by Definition 3.28.

With a similar argument, we get

q([f(trs - tp)lin) = AALf(@([E2]1), - - - @([Ep]1))]o)

The equality then follows by inductive hypothesis.



q/([f(tla . 7tp)]1+n) = q’(uﬁ(n([f([tl]n, - [tp]n)]l)) by Lemma 3.32
= q([f([t1]n, - - -, [tpln)]1) by Equation 3.5
=q([s%(f(t1,.. -, tp)1) by definition of s’
=q([f(t1,- - tp)]14n) by definition of g.

o Fort=ua.f(t,...,t,) and t =va.f(t1,...,t,): Analogous to the above case.
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4 Describing Local Freshness Semantics

In the following chapter, we will describe a graded theory to capture the local-freshness semantics
of nominal automata. To prove this, we will show that the interpretation of pretrace terms
modulo derivable equality under local freshness semantics can be expressed as an injective
morphism from the free model generated by the theory.

Definition 4.1. We define a signature ¥ with ¥y = {+/2, L/0}, £¢ = {pre/1}, and ¥ =
{abs/1}, where all pure operations are depth-0 and all free and bound operations are depth-1.
We abbreviate

at == a.pre(t) and lat = va.abs(t).

The graded theory T is then defined over this signature with the axioms

Xtoz+y=y+u, (4.1)
Xrhoz+y)+z=a+(y+2), (4.2)
Xhoxr+z=ur, (4.3)
Xhtor+1l=ux, (4.4)
X ki a(z+y) =azx + ay, (4.5)
X Hq la(z +y) = lax + lay, (4.6)
XbFial=1, (4.7)
XFilal =1, (4.8)
X Fq laz = laz + ax, (4.9)

ranging over all a € A, all nominal sets X, and all elements x,y, z € X.

The syntax clearly hints at that of bar strings from RNNAs, with the addition of a poststate,
indicating that we can describe the pretraces generated by a state of an RNNA as a term and
thus describe its semantics. For example, we will show that one can express the semantics of
sp in the RNNA given in Example 2.21 at depth 2 using the pretrace term |bbss + lbass in a
well-defined manner.

4.1 Words and Alpha-Equivalence

We will first restrict ourselves to the pretraces of single words and define a notion of local
freshness semantics for them.

Definition 4.2 (Pretraces). A pretrace of depth n € Ny over a nominal set X of variables is
a term ¢t € Termy, ,,(X) which does not contain any occurrences of + or L.

Pretraces over X of depth n are obviously isomorphic to A" x X, as already suggested by the
syntax of terms. In the following, we will identify the two sets.

For nominal automata under local freshness semantics, the language consists of all words alpha-
equivalent to words in the literal language, without the bars. To define something similar for
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(refl) - (symm) ~ (trans) -
T=, T t=qu t=qu
(conge) t :a v (congq) t :a v (a € A)

at =, au lat =, lau
t=,(ab
(perm) agtu — (CL )u (a,be Aja+#D)

Figure 4.1: System of rules for deriving alpha-equivalence for pretraces.

our graded theory, we will first need to define a notion of alpha-equivalence, taking into account
the poststate a pretrace ends with. We will first define this as a subset of the derivation rules
for derivable equality:

Definition 4.3 (Alpha-Equivalence on Pretraces). Let alpha-equivalence on two pretraces
be the relation =, inductively defined by Figure 4.1.

Lemma 4.4. Let t,u € A" x X be pretraces over X. If t =, u, then X b, t = u is derivable.

Proof. This follows from the fact that the derivation rules are a subset of those used for derivable
equality. O

Lemma 4.5. The relation =, is an equivariant equivalence-relation.
Proof. Completely analogous to Proposition 3.11 and Lemma 3.18. O

With this, we can partition the set A” x X of pretraces into equivalence classes. We will denote
the equivalence class of a pretrace t as [t]4.

This is enough to define the local freshness semantics of a pretrace:

Definition 4.6. We define the local freshness semantics of a pretrace using the function
D, : (A" x X)/=, — A" x X with

Dy([t]a) = {uba(w) : w € [tla},
where ub, : A" x X — A" x X removes the bars from a word and is defined inductively by

ubg(z) = z,
ubp, 11 (at) = (a, ubn(t)),
ubny1(lat) = (a, uby,(t)).

When the depth of the term is not important, we often just write D(t) or ub(t).

Lemma 4.7. The above description for D,, is equivariant for all n € Ny.
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Proof. First note that ub,, is equivariant: We will show this by induction on ¢. Let 7 € Perm(A).
e Fort =z with x € X: We have ubg(rz) = 7 = wubg(z).
o Fort=at witht € A" x X,n=n'+1: We have

uby, ((ma)(7t")) = (wa, uby (7t")) by definition
= (ma, Tuby (t)) by inductive hypothesis
= 7(a, uby (")) by definition
= 7ub,(at) by definition.

o Fort=lat' witht € A" x X,n=n'+ 1: Analogous to the above case.

We can conclude that D, is also equivariant: Note that

A~ A~

Dy ([ta) = uby, [[t]a],

where uAan is the direct image under ub,,. Equivariance then follows from Proposition 2.11. [

It is important to note that, since we take into account the poststate for alpha-equivalence, the
language generated by a trace under local freshness semantics is not the same as taking the
local freshness semantics of a pretrace and then removing poststates:

Example 4.8. Consider the pretrace lab € A' x A and the corresponding trace la € A'.

By Definition 4.6, we have X
D([lably) = {cb: c € A, c # b},

however, by Definition 2.20,

D({lla]}) = A.

To make this dependency on the poststate more clear, we will proceed to give an explicit
characterization of the support of a pretrace modulo alpha-equivalence.

4.1.1 Free Names
First, we will define the free names of a pretrace explicitly:

Definition 4.9 (Free Names). Given a pretrace t € A" x X, we define the free names FN,, ()
in the term inductively as

FNo(z) = suppx (),
FNnJrl(at) = FNn(t) U {a}a
FN,+1(lat) = FN,(¢) \ {a}.

When the depth of the term is not important, we often just write FN(¢).
We will also show some useful statements regarding these free names:
Lemma 4.10. The function FN,, : A" x X — P(A) is equivariant for every n € Np.

Proof. By induction on n. Let m € Perm(A) and ¢t € A" x X.
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Fort =z with x € X: By equivariance of supp, we get FNo(7mz) = supp(mx) = wsupp(x) =
mFNo(x).

Fort =at witht' € A" n=n'+1:

FN,(mt) = FN (7t') U {m(a)} by definition
= 7FN, (t') Un{a} by inductive hypothesis
= 7(FN, (') U{a}) by Proposition 2.10
= 7FN,,(¢) by definition.

For t = lat’: Analogous to the above case.

Lemma 4.11. Let t,u € A" x X be pretraces over X. If t =4 u, then FN(t) = FN(u).

Proof. By induction on the derivation of t =, u.

For (refl): We know that t = v = x for x € X. By definition, we have FN(¢) = suppx(z) =
FN(u).

For (symm): We know that u =, t is derivable. By inductive hypothesis, we get FN(u) =
FN(t).

For (trans): We know that, for some v € A" x X, t =, v and v =, u are derivable. By
inductive hypothesis, we get FN(¢) = FN(v) = FN(u).

For (cong,): We know that ¢t = at’, v = au’, and t' =, «’ is derivable. By inductive
hypothesis, we get FN(¢') = FN(u') and thus FN(¢) = FN(¢')U{a} = FN(u")U{a} = FN(u).

For (cong,,): We know that t = lat’, u = lau/, and t' =, v’ is derivable. By inductive
hypothesis, we get FN(¢') = FN(u’) and thus FN(¢) = FN(¢') \ {a} = FN(«/) \ {a} = FN(u).

For (perm): We know that ¢t = lat’, u = |bu/, and ¢’ =, (a b)u is derivable with a # b
and a#u’. By inductive hypothesis, we know that FN(¢') = FN((a b)u'). It follows from
Lemma 4.10 that FN(#') = (a b)FN(u'). We will consider three cases for atoms ¢ € A:

For ¢ = a: By definition, a ¢ FN(t) = FN(¢) \ {a}. Furthermore, we have a#u’ and thus
a ¢ FN(u’) C supp(u'). It follows that a ¢ FN(u) = FN(u') \ {b}.

For ¢ = b: By definition, b ¢ FN(u) = FN(u)\{b}. Furthermore, it follows from a ¢ FN(u')
that b ¢ (a b)FN(u’) and thus b ¢ FN(¢) = ((a b)FN(u')) \ {a}.

For ¢ # a and ¢ # b:

c€FN(t) = ((a b)FN(u'))\ {a} <& c€FN@W') <& ceFN(u)=FN')\ {b}.

O]

We will also show that, if an atom does not occur freely in a pretrace, there is an alpha-equivalent
pretrace where the atom does not occur at all.

Lemma 4.12. Let t € A" x X be a pretrace over X and N € Ps(A) a finite set of atoms. If
N NFEN(t) = (), then there exists a pretrace t € A" x X with t =4t and N Nsupp(t) = 0.

Proof. By induction on n.
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Fort = x with x € X: Set t = x. By (refl), we have t =, t. Furthermore, we get
N Nsupp(t) = N NFN(t) = 0 by Definition 4.9.

For t = at’ with t' € A" x X,n = n’ + 1: Since FN(t') € FN(¢) U {a} = FN(t), we
know that N NFN(#') = (). By inductive hypothesis, we get a pretrace ¢’ with t' =, and
N Nsupp(t') = 0. We set t = at'.

It follows from (cong,) that t = at’ =, at’ =t and, since a ¢ N, we get

N Nsupp(t) = (N Nsupp(t)) U (N N {a}) = 0.

For t = lat’ with t' € A" x X,n = n’ +1: Pick any b € A\ N with b#t'. By applying
(perm), we get t =, 1b((a b)t).

We will show that N N FN((a b)t') = N N (a b)FN(t') = 0: Let ¢ € N. If ¢ = a, then
a ¢ (a b)FN(¥') because b ¢ FN(t') C supp(t’). Otherwise, ¢ ¢ FN(#'). Since b ¢ N and
¢ € N, we have b # ¢ and thus ¢ ¢ (a ¢)FN(t').

By inductive hypothesis, we get a pretrace ¥ with (a b)t' =, ¢ and N Nsupp(t') = (). We
set ¢ = Ibt'.

By applying (congj) and (trans), we get t =, 1b((a b)t') =, b’ = t. Finally, since b ¢ N,

we get
N Nisupp(t) = (N Nsupp(t')) U (N N {b}) = 0.

4.1.2 An Alternative Definition of Alpha-Equivalence

The derivation rules make it easier to reason about pretraces as a fragment of regular terms.
However, we will prefer to use an alternative inductive characterization of alpha-equivalence:

Proposition 4.13. Let t,u € A" x X be pretraces over X. Then t =, u is derivable iff either

1.
2.
3.
/.

t=u=ux forx e X,
t=at' and u = au’ with t' =,
t=lat’ and u = lau’ with t' =, v/, or

t =lat’" and u = |bu’ with a # b, a ¢ FN(u'), and t' =, (a b)u’

Proof. ’If’: We will show the statement for each case individually.

1.

Ift = uw =2 with x € X: Then we can derive z =, x by (reﬂ).

2. Ift =at’ and u = av’ with t' =, «': Then we can derive at’ =, au’ by (cong,).
3.
4. Ift = lat’ and v = 1bu’ with a # b, a ¢ FN(u'), and t' =, (a b)u': By applying Lemma 4.12

If t = lat’ and u = lavw’ with t =, «’: Then we can derive lat’ =, lau’ by (cong,).

with N = {a}, we get a pretrace @ with a#4’ and v’ =, @ (and, by Lemma 4.5, (a b)u' =,
(a b)@'). Tt then follows that

lat’' =, 1bi’ by applying (perm)
=, Ibu by applying (cong).

’Only if’: By induction on the derivation of ¢ =, u.
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o For (refl): We know that t = u = x for z € X. Thus, (1) follows immediately.

o For (symm): We know that u=,t is derivable and, by inductive hypothesis, we only need
to consider the following cases:

1. Ifu=1t=x withz € X: Then (1) follows immediately.

2. Ifu=au' andt = at’ with u' =, ¢': Then, by (symm), we get t =, v’ and (2) follows
immediately.

3. Ifu=lav' andt = lat’ with u'=,t': Then, by (symm), we get t' =, u’ and (3) follows
immediately.

4. If u = 1bu' and t = lat’ with a #b, b ¢ FN(t'), and v =, (a b)t': By Lemma 4.5, we
know that (a b)u’ =, ' and, by (symm), t' =, (a b)u’. Additionally, we have

') by Lemma 4.11

bgFN({#) = b¢FN((
YFN(u') by Lemma 4.10

= bé¢(ab
= a ¢ FN(Z).

M <
Z -

Thus, we can conclude (4).

e For (trans): We know that, for some v € A" x X, t =, v and v =, u are derivable. By
inductive hypothesis, we only need to consider the following cases:

1. Ift = v = z with x € X: Then, by inductive hypothesis, v = u = x. Thus, (1)
follows immediately.

2. If t = at’ and v = av’ with t' =, v': Tt follows by inductive hypothesis that u = au’
with v/ =, «/. By (trans), we can conclude that ¢ =, u'.

3. If t = lat’ and v = lav’ with t' =, v': By inductive hypothesis, we need to consider
the following cases for u:

For u = law’ with v/ =, v/, we can conclude t' =, v’ by applying (trans) and thus, (3)
holds.

For u = Ibu’ with a # b, a ¢ FN(u'), and v' =, (a b)u’, we can conclude t' =, (a b)u/’
by applying (trans). Thus, (4) holds.

4. If t = lat’ and v = 1w’ with a # b, a ¢ FN(v'), and t' =, (a b)v': By inductive
hypothesis, we need to consider the following cases for u:

For u = Ibu’ with v' =, v/, we can conclude from Lemma 4.5 that (a b)v' =, (a b)u’
and, by applying (trans), ¢ =, (a b)u’. Furthermore, it follows from Lemma 4.11
that a ¢ FN(u') = FN(¢'), so (4) holds.

For u = lau’ with a # b, b ¢ FN(«'), and v' =, (a b)u/, we can conclude from
Lemma 4.5 that (a b)v' =, v’ and, by applying (trans), we get t' =, «’. Thus, (3)
holds.

For u = levw with ¢ # a, ¢ # b, b ¢ FN(u'), and v' = (b ¢)u/, we can first conclude
a ¢ FN(u') = FN((b ¢)v") = (b ¢)FN(v') from Lemma 4.11 and Lemma 4.10 because
a ¢ FN(v'). By Lemma 4.12 with N = {a, b}, there exists a pretrace @ with v’ =, @’
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and a, b#4d’. Finally, (4) follows from (trans) and

t' =, (a b)Y by assumption
=4 (a b)(b c)u’ by Lemma 4.5 and v’ =, (b c)u’
=, (a b)(b )@ by Lemma 4.5 and v’ =, @’
=, (a )i’ by Proposition 2.5, (a b)(b ¢)(¢) = a = (a ¢)(c), and a, b#i’
=4 (a o) by Lemma 4.5 and v’ =, @'

e For (cong,): We know that ¢t = at’, u = av’, and t' =, u’ is derivable. Thus, we can
conclude (2).

o For (cong,): We know that t = lat’, u = lav’, and ' =, u is derivable. Thus, we can
conclude (3).

o For (perm): We know that ¢t = lat’, u = Ibv’/, and ' =, (a b)u’ is derivable with a # b and
a#tu’. Then a ¢ FN(u') C supp(v') and we can conclude (4).

O]

With this characterization of alpha-equivalence, we can now show that the "free names” are
exactly the support of the equivalence classes of pretraces modulo alpha-equivalence.

Proposition 4.14. Ift € A" x X is a pretrace over X, then supp([t]la) = FN(2).

Proof. We will first show that FN(¢) is a support for [¢]4, and thus supp([t]a) € FN(¢). We will
use Proposition 2.13 by showing, by induction on ¢, that mt =, ¢ for all = € Fix(FN(¢#)).

e Fort =z withx € X: Then m € Fix(FN(¢)) = Fix(supp(z)) and thus mz = x =, = by
Proposition 4.13 (1).

o Fort=at witht € A" x X,n =n/+ 1: Then we have FN(¢) C FN(#) U {a} = FN(¢t)
and, by inductive hypothesis, m € Fix(FN(¢)) C Fix(FN(¢')) C Fix(supp([t']a)). It follows
from Proposition 2.12 that [rt']q = 7[t']a = [t']a. Thus, we get

m(at') = (wa)(nwt’) by definition
= a(nt') because a € FN(t)
=, at’ by Proposition 4.13 (2) and nt’ =, t'.

e Fort=lat' witht' € A" x X,n =n'+1: We know that FN(t) = FN(¢') \ {a}.
If 7(a) = a, then 7 € Fix(FN(¢')) and we get 7(lat’) =, lat’ analogously to the above case.

If m(a) # a, then we know that w(a) ¢ FN(t'): If we assume m(a) € FN(¢) and (by
m(a) # a) also w(a) € FN(¢') \ {a} = FN(t), then m(7(a)) = 7(a) because m € Fix(FN(t)).
However, since 7(a) # a and 7 is injective, we have (7 (a)) # m(a).

Furthermore, since

(a w(a))(a) = m(a), and
(a 7(@))(b) = b= (b) Vb e FN(t)\ {a},

we can conclude that (a 7(a))t’ = 7t’ by inductive hypothesis and Proposition 2.5. Tt
then follows from Proposition 4.13 (4) and (3) that

lat’ =, I(ma)((a 7(a))t') =4 (wa)(7t') = 7(lat’).
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Conversely, we will now show that FN(¢) C supp([t]a). It is enough to show that FN(¢) C supp(u)
for all pretraces u € A" x X with u =, t by Proposition 2.14.

For t = x with x € X: It follows from Proposition 4.13 that v = = and thus FN(¢) =
supp(z) = supp(u).

Fort =at' witht' € A" x X,n=n'~+1: Then u = av’ with ¢ =, «’ by Proposition 4.13.
Thus, we get a € supp(u). Furthermore, it follows from Lemma 4.11 and Lemma 4.10
that FN(¢') = FN(u") C supp(u’) C supp(u).

For t = lat’ with t' € A" x X,n = n’ + 1: By Proposition 4.13, we need to consider two
cases for u:

If u = lau with ¢’ =, «/, then it follows from Lemma 4.11 and Lemma 4.10 that FN(¢) C
FN(t') = FN(u') C supp(u') C supp(u).

If u = |bu’ with a # b, a ¢ FN(t'), and ¢’ =, (a b)u’: Let ¢ € FN(t) = FN(¢') \ {a}. If ¢ = b,
then ¢ € supp(lbu’). If ¢ # b (and by assumption ¢ # a), it follows from Lemma 4.11 and
Lemma 4.10 that ¢ € (a b)FN(¢') = FN((a b)t') = FN(u’) C supp(u’) C supp(u).

O

We will also show some more properties useful when applying an equivariant function to a
pretrace:

Lemma 4.15. If wr € A" x X is a pretrace and f : X — Y is an equivariant function, then

FN(w

(f(z))) € FN(wz).

Proof. By induction on n.

For w = ¢ with n = 0: It follows from Proposition 2.6 that FN(f(z)) = supp(f(z)) C
supp(z) = FN(z).

For w = aw’ with w' € A", n = n/ +1: By inductive hypothesis, we get FN(aw'(f(z))) =
FN(w'(f(x))) U{a} C FN(w'z) U{a} = FN(aw'z)
Forw = law’ with w' € A", n = n’+1: By inductive hypothesis, we get FN(law’(f(z))) =
FN(w'(f(2))) \ {a} € FN(w'z) \ {a} = FN(law'z)

O

Proposition 4.16. Let wx,vy € A" x X be pretraces and f : X — Y an equivariant function.
If we =, vy, then w(f(z)) =a v(f(y)).

Proof. By induction on n. We only need to consider the cases outlined by Proposition 4.13.
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Forw =v =c¢ andn = 0: Since wr=,vy, we have x = y. It then follows that f(z) = f(y)
and, from Proposition 4.13 (1), f(x) =4 f(y).

For w = aw' and v = av’ with w',v' € A", n = n’ +1: We know that w'z =, v'y and, by
inductive hypothesis, w'(f(x)) =, v'(f(y)). It then follows from Proposition 4.13 (2) that
aw'(f(z)) Za av'(f(y)).

For w = law' and v = lav’ with w',v' € A", n = n’/ 4+ 1: Analogous to the above case.

For w = law’ and v = 1bv’ with a # b, w',v' € A", n =n'+1: We know that a ¢ FN(v'y)
and w'x =, (a b)(v'y). It follows from Lemma 4.15 that a ¢ FN(v'(f(y))) € FN(v'y).
Furthermore, we get w'(f(z)) =4 (a b)(v'(f(y))) by inductive hypothesis. It then follows
from Proposition 4.13 (4) that law'(f(x)) =4 10V'(f(y)).



4.1.3 Injectivity for Local Freshness Semantics

Using this notion of alpha-equivalence between pretraces, we will now show that the local
freshness semantics mapping D of pretraces is an injection from the equivalence classes modulo
alpha-equivalence.

We will use the following properties for this:

Lemma 4.17. Let t,u € A" x X. If D([t]a) = D([u]a), then one of the following is true:
1. t=at’ and u = av’ for some a € A and t',u' € A" x X, or

2. t =lat’ and u = bu’ for some a,b € A and t',u' € A" x X.

Proof. We will consider the following exhaustive list of cases for ¢, u:

e Fort=at' andu = bu' with ',/ € A" x X,n =n'41: If a = b, (1) follows directly.
Suppose that a # b. Then (a, ub(t')) = ub(at’) € D([t]s). However, for all ub(w) € D([ul4)
with w € [u]a, we have w =, u. It follows from Proposition 4.13 that w = bw’ for some
w' and thus ub(w) = (b, ub(w’)) # (a,ub(t)), contradicting the assumption.

o Fort=lat' and u = bu’ with t',u’ € A" x X,n =n' +1: Pick a ¢ € A\ supp(t') with
¢ # a and ¢ # b. By Proposition 4.13 (4), we know that lat’ =, lc((a ¢)t’') and thus
(¢,ub((a ¢)t')) € D([t]a). However, similarly to the above case, for all ub(w) € D([uls),
we have ub(w) = bw’ # (¢, ub((a ¢)t')) with some w’, contradicting the assumption.

o Fort=at' and u= b’ witht,u' € A" x X,n=n'+1: Analogous to the above case.

o Fort=lat' andu = bu’ with t',u’ € A" x X,n =n/+1: (2) holds trivially.

Proposition 4.18. Lett' € A" x X, a € A, and w' € A" x X.
1. bw' € D([at']a) iff w' € D([t')s) and a =b.
2. aw' € D([lat')a) iff w' € D([t')a).
3. Ifa#b, then bw' € D([lat']la) iff b ¢ FN(t') and w' € D([(a b)t']a).

Proof. We will show each statement individually.
1. ’If’: Assume w' € D([t']s) and a = b.
Then there exists a @' € [t']q with ub(@') = w’. Since @' =, t/, we get a’ =, at’ by

Proposition 4.13 (2). Thus, it follows that

aw’ = (a,ub(w')) = ub(aw’) € D([at']s).

‘Only if’: Assume bw' € D([at']4).

Then there exists a @ € [at']q with ub(@) = bw'. Since @ =, at’, we know from Propo-
sition 4.13 that w = aw’ for some @' € A™ x X with @’ =, t'. Thus, we have @’ € [t']4.
Furthermore, we get

~ ~

(a,ub(@')) = ub(aw’) = ub(®) = bw',
concluding that a = b and w' = ub(@’) € D([t']a).

o1



2. Analogous to the above proof.

'If’: Assume w' € D([(a b)t'] and b ¢ FN(¢').

Then there exists a @' € [(a b)t']4 with ub(@’) = w'. Since @' =, (a b)t’ and b ¢ FN(t)
with a # b, it follows from Proposition 4.13 (4) that |bw’ =, lat’. Thus, we get

bw' = (b, ub(@')) = ub(Ibw’) € D([lat']s).

‘Only if’: Assume bw' € D([lat']s).

Then there exists some @ € [lat']q with ub(@) = bw'. Since @ =, lat’, we know from
Proposition 4.13 that w = lcw’ for some @' € A" x X and ¢ € A. Since

(¢, ub()) = ub(lew’) = ub(w) = bu’,
we know that ¢ = b and ub(@w') = w'. Since b # a and Ibw' =, lat', it follows from

Proposition 4.13 that b ¢ FN(¢') and @' =, (a b)t'. Finally, it follows that w' = ub(@') €

D([(a b)t']a)-
O

Proposition 4.19. The function D,, is injective for all n € N.

Proof. Let t,u € A" x X with D([t]s) = D([u]s). We will show [t]s = [u]4 by induction on n.
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o Fort=ux withx € X: Let u=y € X. We know from Proposition 4.13 that [z]s = {z}

and [y|ls = {y}. Thus, we have
D([t]a) = {ub(z)} = {z} = {y} = {ub(y)} = D([ula)-
This means that = y and, by Proposition 4.13 (1), we get t = 2 =, y = u.

For t = at’ with t' € A" x X,n =n'+1: We know from Lemma 4.17 that v = av’ for
some u' € A" x X. We will show that D([t']a) = D([u/]a):

w' e D([t'a) < aw € D([at']s) by Proposition 4.18 (1)
& aw' € D([av]a) because D([t]s) = D([u]s)
& w e D([u]a) by Proposition 4.18 (1).

It now follows by inductive hypothesis that ¢ =, v/ and, by Proposition 4.13 (2), that
t=at =, au = u.

For t = lat" with t' € A" x X,n =n' 4+ 1: We know from Lemma 4.17 that u = Ibu’ for
some v/ € A" x X and b € A.

If a = b: One can show that D([t']s) = D([u/]a) analogously to the above case. It
then follows by inductive hypothesis that ¢’ =, v’ and, by Proposition 4.13 (3), we get
t = lat’ =, lau’ = u.

If a # b: First note that (a,ub(t')) = ub(t) € D([t]a) = D([Ibu/]5). Thus, it follows from
Proposition 4.18 (3) that a ¢ FN(u').

We will now show that D([t']s) = D([(a b)u/]s). We have

w' e D([t']a) = aw € D(lat']4 by Proposition 4.18 (2)
—  aw' € D([Ibu']s) because D([t]s) = D([u]s)
— W € D([(a b)u/]a) by Proposition 4.18 (3),



and conversely

w' e D([(ab)]a) = (abw € D(u]a) by Proposition 2.12, Lemma 4.7
— (b, (a b)w') € D([lbu/]4) by Proposition 4.18 (2)
— (b, (a b)w') € D([lat’]la) because D([t]s) = D([u]a)
= a byw' € D([(a b)t')s) by Proposition 4.18 (3)
— ' € D([t']a) by Proposition 2.12, Lemma 4.7.

It now follows by inductive hypothesis that ¢’ =, (a b)u’/. Finally, since since a ¢ FN(u'),
we get t = lat’ =, Ibu’ = u from Proposition 4.13 (4).

O

4.2 Local Freshness Semantics as a Model

In the following section, we will fix a nominal set X, and a depth n < w.

We will now define a model which interprets interprets pretraces as defined in Definition 4.6 and
extends to all pretrace terms. Defining this as a model is useful because we can benefit from
the soundness already proven before. In the next section, we will show that this interpretation
is indeed injective for all pretrace terms modulo derivable equality.

Definition 4.20. The (3, n)-algebra F’(X) is defined as follows:
o (F(X))m = Pr(A™ x X),
* prepr(x)m(a, L) = {aw:we L},
e absp(x)m((@)L) = {bv: (o)L = (@)L, € I/, ()’ = (B)o},
o +r(x)m(L1, L2) = L1 U Lo,
© Lexym =0

Lemma 4.21. The above description of F'(X) is indeed a well-defined nominal (3, n)-algebra,
in that
1. prepi(xym is equivariant for all m.

2. abspi(x)m is equivariant for all m.

Proof. We will prove each statement individually: Let a € A,w € (F'(X)),, and 7™ € Perm(A).
1. Then

preps(xym(ma, L) = {(ra,mw) : 7w € 7L} = {(7a,7w) : w € L} = mprep:(xym(a, L).

It follows that pres(xym,(a, L) is finitely supported by supp(L) U {a}.
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abspr(x) m(m(a)L)
= {(nb,7v) : m{a)L = (mayn L', 7w’ € 7L, (ra > "= (nb)rv} by definition
= {(nb,7v) : (a)L = (") L', 7w’ € 7L, (wa)ymw' = (nxb)7v} by Proposition 2.9
= {(nb,7v) : (a)L = ("Y', w" € L', (wa")rw' = (wb)mv} by definition
= {(nb,7v) : (a)L = (") L', w" € L', {(aYw' = (b)v} by Proposition 2.9
= mabsgr(x) m(m{a)L)

It follows that absp(x) ., ({a)L) is finitely supported by supp((a)L).
O

The slightly convoluted definition for absp/(x ., is needed to ensure that it is well-defined and
that the algebra satisfies the axioms of the theory:

Example 4.22. If we do not quantify over all representatives of (a)L, then the definition would
not be well-defined:

Consider X = A ={a,b,¢,...} and L = {az : x € A} € (F'(A));.

Let hy, : Ax(F' (X)), be defined by hy,(a, L) = {bv : w € L, (a)w = (b)v}. Then aab € hy(a, L).
Let L' = {bxz : € A}. Then (a)L = (b)L'. However, aab ¢ hy(b,L'): Otherwise, there would
be some bz € L' with (b)bx = (a)ab, but b € supp(ab).

Example 4.23. If we do not quantify over all representatives of (a’)w’, then the algebra would
not satisfy the axioms:

Consider X =1 = {x} and A = {a,b,¢,...}.
Let A be the (X, n)-algebra defined just like Definition 4.20 but with

absg . ({(a)L) = {a'w' : (a)L = (d') L', w" € L'}.
Consider t = la(ax + bx) and v = laax + labx. Then X ko t = u is derivable by (ax,—s) and
axiom (4.6).
Let ¢ : 1 — Ap be the equivariant environment with ¢(x) = {x}. Then
[t]5 = absa 1 ({a){ax, bx}) = {aax, abx, ccx, cbx, ddx, dbx, . ..}
and
[u]s = absa 1({a){ax}) Uabsa 1((a){bx}) = {aax, bbx, ccx, ...} U {abx, cbx, dbx, .. .},

are not equal.

We will now show that, with this extended definition, the algebra indeed satisfies all of the
axioms of the theory. Intuitively, a problem arises when individual summands have smaller or
larger support than that of the entire term. Because of this, (a)L = (a’)L’ for the interpretation
L of the sum term does not always imply (a)S = (a’)S’ for the interpretation S of a summand
term and S” = (a a’)S and vice versa. With this definition, if w’ € S’, we can find a w” € S”
with (a)S = (¢)S” and {c)w” = (a’)w'. To show this, we will use the following lemma:

Lemma 4.24. If a,d’,c € A are pairwise distinct, then (a' ¢) = (a ¢)(da’ ¢)(a d').
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Proof. By simple computation. O
Lemma 4.25 (Monotonicity of abs). If L C S, then absgr(xym({a)L) C absgr(xym({a)S).

Proof. Let bv € absp/(x) m((a)L) with (a)L = (a')L', w' € L', and (a')w" = (b)v. By Proposi-

tion 2.8, we again need to consider two cases:
If a = a’ and L' = L, then (a)S = (a’)S with v’ € L' C S, and thus bv € absp/(x)m((a)S).

If a # @ then o’#L and L = (a ’)L’. We pick some ¢ € A \ supp(a,ad’,b, L, S,w"). We then
have

wel = (ad)w el because L = (a a')L/
= (dc)ad)w eL because (a’ ¢)L = L
= (dc)(ad)w' €S because L C S
= (ac)(d ¢)(ad)w € (ac)S by definition
= (d cuw' €(ac)sS by Lemma 4.24.

Because we have a # ¢ and ¢#5S, it follows from Proposition 2.8 that (a)S = (¢)(a ¢)S.
/

Furthermore, since ¢ # a' and c#w’, it follows from Proposition 2.8 that (c)(a’ ¢)w’ = (a/)w' =
(b)v, and thus bv € absp(x)m((a)S). O

Proposition 4.26. The definition of F'(X) given in Definition 4.20 is a (T,n)-model.

Proof. Since we know that F’(X) is a nominal (X, n)-algebra (by Lemma 4.21), we only need
to show that F’(X) satisfies every axiom.

Let Y be a nominal set with z,y,z € Y and ¢ : Y — (F'(X)); an equivariant environment.

o For Equation 4.1: By commutativity of U, we have [z + y]§ = «(x) U t(y) = t(y) Ur(x) =
[y + =I6.

o For Equation 4.2: By associativity of U, we have [(z +y) + z]§ = (v(z) Ut(y)) Ui(z) =
vz)U (Lly) Ui(z)) =[x+ (v + 2)]-

o For Equation 4.3: By idempotence of U, we have [z + z]§ = L( YU (z) = u(x) = []§.

o For Equation 4.4: By definition, we have [z + L]§ = «(z) UD = [z]§.

o For Equation 4.5: By definition, we have

[a(w + y)]5 = prep x40, (x) U s(y)
— {(a,w) : w € (2) Uu(y)}
— {(a,w) :w € o(2)} U{(a,w) : w € o(y)}
— prep o) (1(2)) U preg ) 1 (1(9)
=[[ax+ayu1.

o For Equation 4.6: We have to show that [la(z + y)]{ = absp/(x)x({a)(¢(z) U (y))) =
abszr(x) x((a)e(x)) Uabspxy x((a)e(y)) = [laz + byl .

First, suppose bv € absp(x) i ({a)(t(x) Ue(y))) with (a)(c(x) U(y)) = (a/)L', w" € L', and
(a")w" = (b)v. We consider the two cases outlined in Proposition 2.8:

Ifa=d and L' = «(z)Ue(y), we know that w.l.o.g. w’ € ¢(z). It then immediately follows
that (a)i(z) = (a')i(z), and thus bv € abspr(xym({(a)u(x)).
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If a # o then a'#((z) U(y)) and o(z) U t(y) = (a o’')L'. We pick some ¢ € A\
supp(a,a’, b, v(x),t(y),w"). It then follows that

w el = (ad)w €uz)Uly) because +(z) Ut(y) = (a o)L’
= (d' ¢)(a d)w' € u(x)Ui(y) because (a’ ¢)(v(z) Ut(y)) = t(x)Ui(y).

We assume w.l.o.g. that (a ¢)(a a)w' € v(x). It then follows from Lemma 4.24 that
(@’ w' = (a c)(d’ ¢)(a a')w’ € (a c)u(x).
Because we have a # ¢ and c#(x), it follows from Proposition 2.8 that (a)iu(z) =

)
(¢)(a ¢)u(z). Furthermore, since ¢ # o' and c#w’, it follows from Proposition 2.8 that
(c)(a" c)w" = (a’)w'" = (b)v, and thus bv € absp(x) ,({a)t(x)).

Conversely, suppose w.lo.g. that bv € absp(x)x((a)e(x)). Since t(x) C u(x) U 1(y),
bv € abspr(x) i ((a)(¢(x) Ui(y))) follows directly from Lemma 4.25.

e For Equation 4.7: By definition, we have

[al]i = preF’(X),O(a7 0)
={(a,w) : w € 0}
— 0= [LI;.

o For Equation 4.8: Since (a){) = (a’)L’ implies L' = (a a’)0 = 0, we have

[lal]i = abspr(x)0({a)?
={bv:{(a)) = () L',w" € L', {(aY0' = (b)v}
= {bv: (@) = (")), w" € 0, {a")w" = (b)v}
=0 =[1]}.

) € abspr(x) k({a)u(x)) = [lax]s,
llax + ax]y.
) =

(a)i(x) and (a)w = (a)w are

o For Equation 4.9: We will show [az]{ = prep(x) x(a, t(z
which is enough to show that [laz]} = [lax]} U [[cm:]]1 =

Let aw € prep:(x)x(a, t(z)) with w € (z). Since (a)i(z
trivially satisfied, we have aw € absg/(xy x((a)()).

O

Note that, while the naming might hint at this definition of F’'(X) directly inducing a functor
F’: Nom — Alg(T,n), this is not the case:

Example 4.27. Consider the nominal sets X = A = {a,b,...} and Y =1 = {x} with | : A — 1
being the morphism into the terminal object.

Let hy, @ Prs(A™ x A) — Pg(A™ x 1) be the mapping of ! using the functor Pg(A™ x —) on
Nom, namely
h (L) = {wx : w e A™ wx € L}.

We will show that (A, )o<m<n does not define a morphism between (X, n)-algebras F'(A) —
F'(1).

Consider L = {a} € (F'(A))o. Then Definition 3.12 (3) would imply that h;(absg(xyo((b)L)) =
abspr(x),0({b)ho(L)), however

hi(abspr(x),0((D)L)) = hi({b'd’ : (b)a = (b')a'}) = h1({ba, ca,...}) = {bx,cx,...}
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and

abs v (x).0((B)ho(L)) = abspr(x) 0 (B){x}) = (% : (b)x = ()%} = {ax, bx, cx, ...}

are not equal.
However, this definition is enough to define an interpretation of pretrace terms into this model:
Definition 4.28. Let the morphism ® : F(X) — F'(X) be defined as

B ([t]m) = [0,

where the equivariant environment 7’y : X — (F'(X)) is defined as
() = {x}.

Lemma 4.29. The above description of ® is indeed a well-defined morphism between (X,n)-
algebras.

Proof. We first note that ® is well-defined because the derivation system is sound (as shown in
Theorem 3.17) and F'(X) is a (T,n)-model (as shown in Proposition 4.26).

To show the morphism property in Definition 3.12 for pre, let [t],, € (F(X))n and a € A. Tt
immediately follows that

Pr1(prep(x) m(a, [thn)) = Pmr1([at]m+1) by Definition 3.19
= [[at]]nmlx+1 by Definition 4.28
= pregr(x),m (@ [[t]]?,/{() by Definition 3.13
= pregr(x)m (@ Pm([tlm)) by Definition 4.28.
For the other operations, the steps are analogous to the above. O

Furthermore, we will show that, in the context of single pretraces, the interpretation in this
model is exactly the local freshness semantics of the pretrace.

Theorem 4.30. Ift € A™ x X is a pretrace, then ®.,([tlm) = D([t]a).

Proof. By induction on m.

o Fort =z with v € X: Since [z]s = {z} by Proposition 4.13, we get
o([2]o) = 1 (2) = {a} = {ub(z)} = D([z]a).

e Fort=at witht' € A™ x X,m =m’+ 1: We have

P ([atlm) = prepxy,m (@ P ([t]r)) by Definition 3.13
={aw :w € ®p ([t')} by Definition 4.20
= {aw : w e D([t']a)} by inductive hypothesis.

First, assume aw € ®p,([at'];,) with w € D([t'a). Tt follows from Proposition 4.18 (1)
that aw € D([at']s).

Conversely, assume bw' € D([at']s). Tt follows from Proposition 4.18 (1) that a = b and
w' € D([t']a). Thus, we get bw’ = aw’ € ®,,([at'],,) by definition.
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o Fort=lat' witht € A™ x X,m =m'+ 1: We have

Dy ([lat]m)
= abspr(x) m ((@) Py ([t ] ) by Definition 3.13
= {bv: ()P ([t')sr) = ()L, 0" € L', (a')w' = (b)v} by Definition 4.20
= {bv: (a)D([t']a) = (&L, w' € L, (d')w' = (b)v} by inductive hypothesis.

Assume bv € ®,,([lat'],,) with (a)D([t']a) = ('), w’ € L', and (a’)uw’ = (b)v.
We'll first show that la/@w’ € [t]4 for some @' € A™ x X with w’ = ub(@'):

— Ifa = d, then I = D([t')s) and w’ € D([t']s). By definition, there exists a @’ € [t']4
with w’ = ub(@’). It then follows from Proposition 4.13 (3) that law’ € [at']4.

— If a # d, then o ¢ supp(D([t')s)) = supp([t’}) = FNA( ') by Proposition 4.19 and
Proposition 4.14. Furthermore, we have v’ € (a a')D([t']a) = D([(a a’)t'|a. By
definition, there exists a @' € [(a a/)t']q with w’ = ub(@’). It follows from Proposi-
tion 4.13 (4) that la'@’ € [at']4.

We'll proceed to show that bv € D([t]s):

— If a’ = b, then v = w’ and bv = (/, ub(@')) = ub(l'w’) € D([t]a).

— If @’ # b, then b#w' and v = (a’ b)w’. Then we have b ¢ FN(w') C supp(w’). Tt
follows from Proposition 4.13 (4) that 1b((a’ b)w’) € [t]4. Thus, we get

bv = (b, (a’ b)w') = (b, (a’ b)ub(@')) = (b, ub((a b)) = ub(Ib((a’ b)d')) € D([t]a).

Conversely, assume that ub(@) € D([lat']q) with @ € [lat']s. It follows from Proposi-
tion 4.13 that we only need to consider two cases:

— If @ = law" with @' =, t": We know that uAb(u}’) € D([t')s). With o’ = b = a and
L' = D([t']a), it then follows that ub(w) = (a,ub(@’)) € ®,,([lat’]m)-

— If w = ld'w" with a # d, ' ¢ FN(¥), and @' =, (a a')t': We know that a’ ¢
supp(D([t']a)) = supp([t']la) = FN(¢') by Proposition 4.19 and Proposition 4.14. Tt
follows from Proposition 2.8 that

(@) D([t'la) = (a)(a ') D([t'la) = () D([(a a')t]a).

Since @' € [(a a’)t']s and thus ub(w') € D([(a a')t']a), by setting b = o/, we get
ub() = (a/, ub(@')) € By ([lat’],n).

O]

This characterization will enable us to prove the injectivity of ®,,: In particular, it tells us
that when applying abs to a pretrace, one only has to consider the “outer” abstraction in the
definition, since supp(L’) = FN(w") C supp(w’) for all w’ € L'.

4.3 Interpretation of Sums

Having shown that ® extends our definition of local freshness semantics to pretrace terms with
+ and 1, we will proceed to give a more explicit description of this interpretation.

Before we continue, we will prove some helpful properties of more complex terms.
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Lemma 4.31. Let t,u,v € Termy, ,,(X) and a € A. Then the following equalities hold:

1. [t + Ul = [u+ t)m,

(t+u)+vm=[t+ (u+v)|n
t+thn = [tIm,
t+ Lm = [tlm,

la(t + u)]m = [lat + lu]y,
allmtr = [Llmt1,

la ]m+l [J—]m-i-lf

© % NS O e

[
[
[
[
[a(t + u)]m = [at + au]m,
[
[
[
[

|at]m+1 [Iat + at]m+1.

Proof. By simple application of (ax,—s), for example for (1):

We know that Termy; ,,(X) Fo t +u = u+1t is an axiom in the graded theory by Definition 4.1.
Set 7 =ids € Perm(A) and 0 = idtermy, ,, (x) * Terms,m(X) — Termy ;,,(X). Then o is trivially
derivably equivariant: Let m € Perm(A) and r € Termy ,,(X). Then X k, wo(r) = o(nr) is
derivable because wo(r) = mr = o(nr) and because derivable equality is an equivalence relation
by Lemma 3.18.

Thus, we can conclude that X k.10 (7(t + u))o = (7(u + t))o is derivable by applying
(aX¢pu—utt). Since (7(t +u))o = (t+u)o =t +wu and (7(u+t))o = (u+t)o = u +t, we
also get X F, t +u = u + t. By definition of ~, this means [t + u],, = [u + t]n. O

Notation 4.32. Since summation in equivalence classes is both commutative and associative
(see Lemma 4.31 (1) and (2)), we will leave out the parenthesis, implicitly add or remove
parentheses, and reorder summands within equivalence classes. The constant L is seen as a
neutral element for summation (by Lemma 4.31 (4)).

We will also often implicitly use that derivable equality is a congruence (by Lemma 3.18).

Furthermore, we will use the notation

(Zhit] =ttt

where k € Ng and ¢1,...,t; € Termy ,,,(X). For k =0, we set
[Z?:l tl} = 1.
m
If S={t1,....tx} C Termy ,,(X) is a finite set with k£ € Ny, we also use the notation

[ZtGS t}m = [Zf:l tl} .

Since, by Lemma 4.31 (3), sums are idempotent, it does not matter whether ¢,...,t; are
pairwise distinct or not.

Lemma 4.33 (Distributivity over Sums). Let k € Ny and t1,...,t; € Termy, »(X) be terms.
Then the following equalities hold:

1. {a, (Zle tzﬂ = [Zle ati] _— for all a € A,
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2. :Ia (Zle ti)]mﬂ = [Zle Iatz} _— forall a € A,
3. :77 (Zle tz)}m = [Zle TFti]m for all m € Perm(A),

4. _(Zle ti) 0} = {Zle tia} for all substitutions o : X — Termy ;(Y).
L m—+l m+l

Proof. We will only show (1) by induction on k, the other statements are analogous.

e For k =0: We have

{a (Z?:l tz)} il [aL]mi1 by definition of ¥
= [Lmt by Lemma 4.31 (7)
= [Zf:l ati] _— by definition of 3.

o Fork =k +1: We have

[a <Zf:1 tz)] = —@ <Zf;1 t; + tk)} by definition of ¥
m+1 L m+1

= |a <Zf;1 ti) + atk} by Lemma 4.31 (5)
L m+1

= Zflzl at; + atk} ) by inductive hypothesis
L m+

= Zf:l atz} by definition of X.
L m+1

Lemma 4.34 (Properties of Enumerated Sums). Let t € Termy; ,,(X) with t = Zi?:l ti. Then
the following properties hold:

1. If u € Termy (X)) and [u]ym = [u+ ti]m for every i € {1,...,k}, then [u]m = [u+t]n.
2. If u € Termy 1, (X) and [ti]m = [ti + ulm for some i € {1,...,k}, then [t], = [t + u]pm.
3. If u € Termy, 1, (X) and [t;];m = [u]m for some i € {1,...,k}, then [t]m = [t + ulm.

Proof. We will show each statement individually:
1. By induction on k.
o For k =0: We have [u],, = [u +3 tz} = [u+ L] = [u+ t];, by Lemma 4.31
(4). :
o Fork=Fk +1: Tt follows that

[u]

=u+ti+...+tm by inductive hypothesis

m = |
=[(u+tp)+t1+...+tpm by assumption with i = k
=lut+ti+...+tw +tilm by reordering summands
=[u+t]n, by assumption.
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2. By simple computation we get

[t]m = [Zle tl} by assumption
m
=ti+...+ti+...+tm by definition of ¥
=ti+...+E+u)+...+tm by assumption
=[(ti+...+ti+...+tx) +ulm by reordering summands
= {Zle t; + u} by definition of ¥
m
= [t + ulm by assumption.

3. It follows from Lemma 4.31 (3) and the assumption that [¢;],, = [ti + ti]m = [ti + u]m. By
application of (2), we get the expected result.

O]

Lemma 4.35 (Properties of Sums over Sets). Let S, S" € P¢(Terms; ,,,(X) be finite sets of terms.
Then the following properties hold:

1. If S and S’ are derwvably equal in that {[t]m : t € S} = {[t']; : t' € S'}, then [ ,cqt]
[Zt’GS/ t,]m

2. Dest+Xves '], = [Duesus -

m_

Proof. Let S = {t1,...,t;} and S" = {t},...,t},} with k,k € Ng and t1,...,t,t],...,t), €
Termy; , (X).

1. We will first show that

[Ztes ﬂm = [Zi‘czl ti} o [Z?:l ti + Zf; t;} o [Ztes t4+ 2 ves t/]m :

By Lemma 4.34 (1), it is enough to show [Zle tl} = [Zle t; +t;} for every j €
{1,...,k'}. We know that S and S’ are derivably equal, and thus [t%],, € {[t]m : t € S}.
So there exists a t; € S with [t)],, = [t}]. The statement then follows from Lemma 4.34

(3).

With a similar argument, one can show that
[Zt'eS' tl}m = [Zt/eS' '+ D tes ﬂm :

Thus, equality follows from Lemma 4.31 (1).
2. By definition, SUS" = {t1,...,t,t],...,t},}. It then follows that by definition of ¥ that

[Ztest+zt/esl t/]m = [tl + oo +tk +t,1 + e +t,/}m — [ZteSUS/ t]m.

O
Lemma 4.36. If S € Pr(Pr(Termy,,,(X))) is finite nested set of terms, then
[Cres Tiert] = [Zteus t} :
Proof. This follows directly from Lemma 4.35 (2) by routine induction on |S]|. O
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Of special importance is the fact that every term is derivably equal to a ”flattened” version of
it, containing only single pretraces as summands:

Proposition 4.37. If t € Term,, x(X) is a term, then [t],, = [Zle wz} , where k € Ng and
m

wi, ..., wp € A™ x X are pretraces.

Proof. By induction on ¢.

o Fort=ux withx € X: Set k=1 and w; = z. Then we get [Zle wz}o = [z]o = [t]o-

o Fort=1:Setk=0.Set k=0. By definition of ¥, we get [Zle wz} = [L]m = [tIm-

o Fort=at witht € Termy,,(X),m =m' + 1: By inductive hypothesis, we know that
o = [Sh, wi]
m
with k € Ng and w1, ..., w, € A™ x X. It then follows from Lemma 4.33 (1) that

ot = [a (Syw)] =[Sy o]

Since aw; is a pretrace for every i € {1,...,k}, the statement holds.
e Fort = lat': Analogous to the above case.

o Fort=r+s with u,v € Termy ,,(X): By inductive hypothesis, we know that
= [ Shyw] - and [sh = [Siy v
with k,l € Ny and wy, ..., wg,v1,. .., € A™ x X. It then follows that
[r + 8]m = [Zlewi+22:1vi}m =[wi + ... Fwp+ 1+ Ul

is a sum of pretraces.

Proposition 4.38. If k € Ny and wy,...,w € A™ x X are pretraces, then

@ ([ wi] ) = ULy Dlwila).

Proof. By induction on k.
e For k = 0: By definition, we have

o, ([ZL wz}m) = B ([Lm) = Lp(xym = 0 = U, D([wila):
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o Fork=Fk +1: It follows that

D ( _Zf:l wz} m)
=, (Ziil w; + wk} m) by definition of X
= +wamn<@m([2ﬁilw4m),®m(h%ho) by Lemma 4.29
= Op 25;1 wzi|m) U Dy, ([wi]m) by Definition 4.20
= Uii1 D ([wila) U @ ([wr]m) by inductive hypothesis
= U2, D([wila) U D([wk]a) by Theorem 4.30
= U§:1 [)([wz]a) by definition.

d

Proposition 4.39. Let t € Termy, ,,(X) be a term and w € A™ x X a pretrace. If Dp,([w]a) C
D, ([tlm), then [ty = [t + w]pm.

Proof. By induction on m.

We know from Proposition 4.37 that [t],, = [Zle Ui] for some k € Ny and pretraces
m

V1, .., 0 €A™ X X,
o Forw=uz¢€ X and m=0: We know that v; € X for all 7 € {1,...,k}.

It follows from Proposition 4.13 that D([w]s) = {ub(z)} = {z}. By Proposition 4.38, we
also get

@o([tlo) = @0 ([Zh wi] ) = Uk Dloila) = Ui {01} = {or, 0

Since D([w]a) € ®o([t]o), it follows that z = v; for some i € {1,...,p} and thus also
[z]o = [vi]o. The statement then follows from Lemma 4.34 (3).

o Forw=aw withw € A™ x X,m =m’ +1: We will define a new sum term

k k k
= Z Vi + Z V) + (a b)v}.
i=1 i=1 i=1
vi=av; vi=lav] vi=lbv},ab,agFN(v})
Note that it follows from Lemma 4.33 (1) that
k k k
[at]m = Z avi + Z av; + Z a((a b)v})
i=1 i=1 i=1
v;=av, vi=lav} v;=|bv},ab,agFN(v})
m
Next, we will show that
[t]m = [t + at']m (4.10)

using Lemma 4.34 (1) for all three sums individually:

1. For v; = av}: Then [v;];, = [av]]y, and, by Lemma 4.34 (3), [t]m = [t + av]]m.

63



64

2. Forwv; = lav,: It follows from Lemma 4.31 (9) that [v;]n, = [vi+av]],,. By Lemma 4.34
(2), we have [t], = [t + avl] .

3. For v; = |bv] with a # b and a ¢ FN(v}): It follows from Proposition 4.13 (4) and
Lemma 4.4 that [Ibv}],, = [la((a b)v})],. We can then conclude from Lemma 4.31 (9)
that [vi]m = [v; + a((a b)v])]n, and, by Lemma 4.34 (2), [ty = [t + a((a b)V])]m.

Furthermore, we will show that Z\)([w’]d)g @ ([];r). So let 2 € D([w']s). By Proposi-
tion 4.38, it is enough to show that x € D([u]a) for some summand u in ¢'.

It follows from Proposition 4.18 (1) that az € D([aw']s) € ®m([t]lm). By Proposition 4.38,
we then know that ax € D([v;]s) for some i € {1,...,k}. By Proposition 4.18, we only
need to consider the following cases for v;:

— Ifv; = av!: Then z € D([v}]a) and v/ is a summand in ¢'.
— Ifv; = lav): Then x € D([v}]a) and v/ is a summand in ¢'.

— If v; = Ibv} with a # b: We know that a ¢ FN(v}) and = € D([(a b)vl]a). By

definition, (a b)v] is a summand in ¢'.

We can conclude that

[t]m = [t + at']m by Equation 4.10
=[t+alt' +w)|n by inductive hypothesis
= [t + at’' + aw']m by Lemma 4.31 (5)
= [t + aw']m by Equation 4.10.

For w = law' with w' € A™ x X,m =m’ +1: Pick ¢ € A\ FN(w') s.t. ¢ # a and there
isno i€ {1,...,k} with v; = cv} or v; = lev] (so there is no term prefixed with ¢). This
is always possible because there are only k£ terms and thus only finitely different prefixes
used.

We will now define a new sum term

t = (b c)v}.

M-

i=1
v;=|bv},c¢FN(v})

Note that it follows from Lemma 4.33 (2) that

(et = > le((b ¢)v))
=1
vi:|bv§,c¢FN(v§)

Next, we will show that
[ = [t + et (4.11)

using Lemma 4.34 (1): Assume v; = Ibv, with ¢ ¢ FN(v}). Since b # ¢ by choice of ¢, it
follows from Proposition 4.13 (4) and Lemma 4.4 that [Ibv}],, = [le((b ¢)v})];. We can
thus conclude [t],, = [t + Ibv}] from Lemma 4.34 (3).

Note that, since ¢ # a and ¢ ¢ FN(w') by choice of ¢, it follows from Proposition 4.13 (4)
and Lemma 4.4 that

[law']m = [le((a ¢)w)]m. (4.12)



Furthermore, we will show that D([(a ¢)w']a) C By ([t']lmr). So let 2 € D([(a ¢)u']s). By
Proposition 4.38, it is enough to show that 2 € D([u]s) for some summand w in #'.

It follows from Proposition 4.18 (2) that cz € D([lc((a ¢)w')]a) = D([law']a) € @m([t]m)-
By Proposition 4.38, we then know that cz € D([vi]a) for some i € {1,...,k}. By choice
of ¢, we only need to consider the case v; = Ibv, with b # ¢, as there are no pretraces
beginning with ¢ or le. It then follows from Proposition 4.18 (3) that ¢ ¢ FN(v]) and
z € D([(b ¢)v!]a). By definition, (b ¢)v] is a summand in #'.

We can conclude that

[t]m = [t + lct'|m by Equation 4.11
= [t+le(t' + (a )w")]m by inductive hypothesis
= [t +lct' +lc((a c)w')] by Lemma 4.31 (6)
= [t +lc((a c)w)] by Equation 4.11
= [t + law’] by Equation 4.12.

This can be used to finally prove injectivity of ® for all terms:
Theorem 4.40. The function ®,, is injective for every m € Ny.

Proof. Let t,u € Termy; y,(X) with ®,,([t];m) = ®m([u]m). We have to show [t],, = [u]p.
We will first show [t],, = [t + u|m

It follows from Proposition 4.37 that [u], = [Zle ul} for some k € Ny and pretraces
— m

ug,...,ur € A™ x X. By Lemma 4.34 (1), it is enough to show [t],, = [t + u;]m for every

ie{l,...,k}.

We know that D([ug]s) C U§:1 ﬁ([uj]a) = ®,,([u]m), where the last equality follows from

Proposition 4.38. By assumption, it then follows that ﬁ([uz]a) C &, ([t}m). Thus, we can
conclude [t],, = [t + ;] from Proposition 4.39.

With a similar argument, one can show [u], = [u + t],. The equality then follows from
Lemma 4.31 (1). O
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5 Graded Semantics for RNNAs

Now that we have constructed a graded theory to capture local-freshness semantics and shown
that this theory induces a graded monad, we turn our attention to actual RNNAs and show
that we can use this induced graded monad to capture the local-freshness trace semantics of
them.

Definition 5.1. Let the graded semantics for RNNAs under local freshness be defined
by the graded monad ((M,),n, (™)) induced by the graded theory given in Definition 4.1, as
well as the natural transformation « : H — M with

ayx : Pr(A x X) x Pe([A]X) = Termy 1 (X)/~,

x(S,,Sp) = | Y az+

(a,x)€ St (a,z Eux [Sb]
where uy : [A]X — Ax X is any splitting of [A] X, in that, if ux (( = (b,y), then (a)x = (b)y.
Lemma 5.2. The above description of a is indeed a well-defined natural transformation, in
that
1. The definition of ax is invariant under the choice of ux for every X € Ob(Nom).
2. ax is equivariant for every X € Ob(Nom).

3. « 18 natural.

Proof. We will first show that, for a,a’ € A and z,2’ € X, we have

(a)z = (V' = [laz]; = [ld'z'];.

By Proposition 2.8 there are two cases to consider:
o Ifa=4d and x = 2/, then [lax]; = [ld’2]; € 5.

o If a # d, a#ta’, and x = (a d’)2/, then we know a ¢ FN(2') = supp(z’). It then follows
from Proposition 4.13 (4) that [laz]; = [ld’z']; € S".

With this, we can conclude that, for a set Sp € P([A]X) and any splitting ux : [A]X — A x X,
we have

{llaz]y : (a,x) € ux[Sp]} = {[lax]1 : (a)x € Sp}. (5.1)

We will proceed to show the statements individually.
1. Let ux, vy : [A]JX — A x X be two splittings of [A]X.
By Lemma 3.18, it is enough to show

Z lax = Z laz

(a,z)Eux[Sh] (a,z)€u’y [Sp] 1
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It follows from Equation 5.1 that

{llax]y : (a,z) € ux[Sp]} = {[laz]: : (a)x € Sp} = {[laz]; : (a,z) € u'x[Sp]}-

The statement then follows directly from Lemma 4.35 (1).

. Let m € Perm(A), Sf € Pr(A x X)), and Sy, € Pr([A]X).

We have to show equality for the equivalence classes of terms

OéX(7I'Sf,7TSb)|: Z ax + Z Iam]

(a,x)em St (a,x)Eux [mSp)

and

wax(Se, Sp) =7 [ Z axr + Z Iax]
[Sb} 1

(a,x)€ Sk (a,x)Eux

= |7 ( Z ar + Z |aw>] by Proposition 2.12
( [Sb} 1

a,x)€ESs (a,z)€ux

= Z m(az) + Z W(Iax)] by Lemma 4.33 (3).
[Sb) 1

(a,x)ESf (G,I)EUX

By Lemma 4.35 (1), it is then enough to show equality of the summands in both both
sums: For the first sum, we have

{[(wa)(7x)]y : (ra,7x) € wSs} = {[(wa)(wx)]1 : (a,z) € S¢} = {[7(ax)]1 : (a,x) € S¢}.

For the second sum, we have

{{laz]y : (a,z) € ux[nSp]} = {[[(7a)(7x)]1 : (ma,7x) € 7Sp} by Equation 5.1
= {[l(ma)(7x)]1 : {(a)x € Sp} by definition
= {[r(lax)]; : (a)x € Sp} by Definition 3.5
= {[r(lax)]1 : (a,z) € ux[Sp|} by Equation 5.1.

. Let X,Y € Ob(Nom) and f: X — Y equivariant.

We have to show that, for every F' € Pf(A x X) and B € Pr([A]X), M1(f)(ax(St,Sp)) =
ay (H(f)(SF, Sb))-

By explicit computation, we get

My (f)(ax (S, Sb)) = Mi(f) ( |: Z ax + Z Iax] ) by definition of «
[Sb] 1

(a,z)€ Sk (a,z)€ux

= ( Z ax + Z Iax) O'f] by Definition 3.28
L [Sb} 1

(a,z)€S¢ (a,x)€ux

= Z (ax)os + Z (Ia:z:)af] by Lemma 4.33 (4),

| (a,7)€Sk (a,x)Eux[Sh) 1




where o is defined as in Definition 3.25. On the other hand,

ay (H(f)(5f,5)) = ay({(a, f(2)) : (a,z) € S}, {{a) f(z) : (a)x € Sp})

::S{)

= Z a(f(x)) + Z lax

(a,x)€ St (a,z)€ulS]] 1

Once again, by Lemma 4.35 (1), we only need to show equality of the summands in both
sums. By Definition 3.4, we get

{[(az)oyy = (a,2) € Si} = {[alof(2)) = (a,2) € S} = {[a(f(2))1 = (a,2) € St}

and for the second sum

{lllaz)of]i : (a,z) € Sp} = {[(lax)os]1 : (a)x € Sp} by Equation 5.1
= {[la(f(x))]1 : (a)x € Sp} by Definition 3.4
= {lla(x)]1 : {(a)z € St} by definition of S},
= {lla(x)]1 : (a,x) € u[SL]} by Equation 5.1.

5.1 Capturing the Bar Language

We will proceed to show that the terms produced by the graded semantics capture the bar
language of the RNNA.

First, we will introduce some lemmas to simplify evaluation of the graded monad multiplication.

Lemma 5.3. If w[t], € A" x My(X) is a pretrace over equivalence classes of terms, then
it ([wltlil,) = [witln k-

Proof. By induction on n.

o Forw=c¢andn =0:

HsE ([t1el,)

GRS by Definition 3.28
t]k by Definition 3.13.

e Forw=aw withw' € A", n=n'+1:

pE ([aw'[tl],) = [aw'[t]x]9 by Definition 3.28
= prep(x) k(@ [w'[tk]5) by Definition 3.13
— Prep(x) (a, ek ([w'[t)i] n,)) by Definition 3.28
= prep(x) k(4 (W't k) by inductive hypothesis
= [aw't] ik by Definition 3.19.

e For w = law’: Analogous to the above case.

69



d

Lemma 5.4. If | € Ny and wy[t1]g, ..., wi[ti]x € A" x My(X) are pretraces over equivalence
classes of terms, then

i ([Swlel] ) = [Shgwt]

Proof. By induction on I.

e Forl=0:
M?{k ([Zizl w; [tz]k] ) = M%k([J_]n) by definition of ¥
= [[i]]i# by Definition 3.28
= Lrx)ntk by Definition 3.13
= [L]ntk by Definition 3.19.
o Forl=10+1:
n l
i ([eamt])
_ nk 4 ..
= Hx ([Zi:1 w;lti]k +wy [tl]k} ) by definition of X
/ id
= [[Zi—l w;[ti]r + wy [tl]kﬂ by Definition 3.28
= ),n+k ([{Zl 1 Wit k ) IIwz [tﬂkﬂiff) by Definition 3.13
= )tk <//)l(k ({ i=1 wi[ti]kh) 1 ([ [tl]k]n)) by Definition 3.23
= +RX)ntk (M?{k ([ -1 wi[ti]k}n) ; [wltl]n-i-k) by Lemma 5.3
= +F(X)n+k <[Zﬁ,:1 witz} . [wztl]n+k> by inductive hypothesis
n+
= [Zi,:l wit; + wltl] B} by Definition 3.19
n+
= [Zé:l witz} . by definition of X..
n+

We will continue by characterizing the pretraces of RNNAs.

Definition 5.5 (Pretraces of RNNAs). The pretraces generated by a state s € @ of an RNNA
defined by v : Q — H(Q) are given as

Lo(s) = {[wqla : s = q,w € A*, q € Q}.
We also define the pretraces of length n as f/,(;yn)(s) = {[wqls € La(s) : |w| = n}.

Lemma 5.6. The pretrace map f)&n) 1 Q — (A" x Q) /%=, is equivariant for all n € Ny.
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Proof. Let m € Perm(A). It then follows that

L (ws) = {[(mw)(mq))]a : ws = mq, 7w € A", 7q € Q} by definition
= {[(rw)(7q)]a : s = qw € A", ¢ € Q} by equivariance of —
= {r[wgla : s = qw € A", g € Q} by Proposition 2.12
= L(n)(s) by definition.

The support of a pretrace is limited by the support of the origin state, as shown below:

Lemma 5.7. Let s € Q be a state in an RNNA defined by v : Q — H(Q). If [wqla € ﬁa(s),
then supp([wgla) = FN(wq) C supp(s).

Proof. By induction on w.

e Forw=c¢ and n =0: We have s = ¢ and, by Definition 4.9, FN(q) = FN(s) = supp(s).

o Forw=aw withw' € A", n=n'+1: Then we have s & s 5 ¢ for some §' € Q. It
follows that

FN(aw'q) = FN(w'q) U {a} by Definition 4.9
C supp(s’) U {a} by inductive hypothesis
C supp(s) by Proposition 2.22.

e Forw = law' withw' € A", n=n'+1: Then we have s % s’ 5 ¢ for some s’ € Q. It
follows that

FN(law'q) = FN(w'q) \ {a} by Definition 4.9
C supp(s) \ {a} by inductive hypothesis
C supp(s) by Proposition 2.22.

O]

We can show that the a-pretrace sequence generated by our graded semantics indeed captures
these pretraces.

Theorem 5.8. Let s € Q be a state in an RNNA defined by v : Q — H(Q). Then
(M) () =
Y (S) - quevn [l:(an)(s)] wq nv

where vy, : (A" x Q)/Z4 — A" x Q is any splitting of pretraces, in that [-]4 o v, = id.

Proof. By induction on n.

« Forn = 0: By definition, we have 79 (s) = ng(s) = [s]o. On the other hand, —° is just
the identity relation, and thus L (s) = {[s]a}. Since, by Proposition 4.13, [s]a = {s},
we know that UO[L&)( )] = {s}.
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o Forn=n'+1: Let y(s) =
we get

7"(s)
(by definition of v™)

g M) (ag(v(s)))
(by Definition 5.1)

s (Mm(

(by Definition 3.28)

Hg' > aq+
(a,q)€S¢

(by Lemma 4.33 (4))

( Z (aq)o-'y(n/) +
(a,q)ESf

(by Definition 3.4)

in

HQ

in

HQ

Y a

(a‘>q)€Sf

>

e

(by Lemma 5.4)

PSS

(a,q)€S¢ wrev, [L5 ()]

POEEEDY

| (@DESt yrev,, (25 ()]

(by Lemma 4.36)

2.

| (a,q)€Ss,wrev, /[

™ ()]

(Sf, Sp). Fix a splitting ux :

(L
(a,q)€SF

2.

( 1q) Cux

( > ") +
(a,9)€Ss

(by inductive hypothesis)

W EV,, 1 [[A/E,L

awr +

awr +

[A]X — (A, X). By computation,

2.

((l,q)EUX

aq +

)
[Sb} 1
)
[Sb} 1
(|GQ)Uv(n'>} )
1
la('y(”/)(q))] )
1

2

(a,q)eux [Sb]

2.

(a,9)€ux[Sh]

wr + Z la Z wr
n/)(q)] . (a,q)Eux[Sh) wrevn/[ﬁgn/)(q)] wly
wr | + Z la Z wr
(a,q)Eux[Sh) wrev, [[A/gn/)(q)] N

(by Lemma 4.33 (1) and (2))

lawr

2 2.

(@) €ux[Sh] yrey (207 (g)]

>

lawr
(a,q)€ux [Sblwrev, L8 (q)]

n

We will now show that this matches the given description. By Lemma 4.35 (1) and (2),

it is enough to show that

S =

{lawr],
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: (a,q) € Sg,wr € v [LT) ()]} U {[lawr],
= {[wr]a : wr € v [L{Y ()]} =

q) € ux([Sp),wr € v [LT ) (q)]}

 (a,
LE(s).



First, assume that (a,q) € Sf and wr € v,y [ﬁ&”’)(q)] It follows that [wr]s € f/&nl)(q). By
definition of S and L"), we have s % q = r and thus [awr]s € f/&n)(s)

Now, assume that (a,q) € ux[Sp] and wr € vnr[ﬁ,&nl)(q)]. It follows that (a)qg € Sy
and [wr]s € ﬁén)(q) By definition of S, and ﬁg”), we have s % ¢ % r and thus
[lawr], € f/&n)(s).

Conversely, assume wr € vy, [f)&n)(s)]

If w=aw for a € A and w' € A", then there exists some ¢ € Q with s = ¢ w—/> r and
thus (a,q) € S with [w'r]s € Ll )(q). So there is an = € v,y [i&” )(s)] with [z]a = [w'r]4.
It follows from Proposition 4.13 (2) that [aw'r|s = [az]s € S.

If w= law for a € A and w' € A", then there exists some ¢ € Q with s 19, q g
and thus (a)q € S, with [w'r]s € ﬁ&n)(q) Then ux({(a)q) = (d,¢) € ux[Sp] with
(a)q = (a’)q'. By Proposition 2.8, we need to consider two cases:

/

— Ifa=d" and ¢ = ¢': Then [law'r]s € S follows similar to the above case.

— Ifa # d, d#q, and ¢ = (a d’)q: By Lemma 5.7, o’ ¢ FN(w'r) C :c,up,p(q). By
Lemma 5.6, we get [(a a)(w'r)]s = (a a)[w'r]s € L<”>((a a)q) = L8(¢). So
there exists an x € Un[ﬁ& )( "] with [z]g = [(a d')(w'r)]s. Finally, it follows from
Proposition 4.13 (4) and (3) that [law'r]s = [ld’((a a')(w'r))]a = [ld'z]s € S.

g

5.2 Capturing Local Freshness Semantics

To show the correctness of our graded semantics, we still need to show that our definition of
alpha-equivalence on pretraces over 1 and alpha-equivalence on bar strings are the same.

Proposition 5.9. Let X = 1 = {x} and w,v € A" be bar strings. Then (w,*) =, (v,*) iff
W =4 V.

Proof. ’If’: Assume that w =, v. Since =, is an equivalence, we only need to consider the
case w = ulax and v = ula’z’ with (a)z = (a’)z’ in [A]JA*, where u € A™ and z,2' € A* with
n=m+1+k.

It follows from Proposition 2.8 that there are only two cases:

e If a = d and x = 2’: Then we have w = ulax = ula’z’ = v and, because =, is an
equivalence, (w,*) =, (v, *).

o Ifa+#d,a#2’, andx = (a a')a’: Since =, is an equivalence, we have (z,*) =, ((a a')z’, %).
Then, since a ¢ FN((2/,x)) C supp(z’), it follows from Proposition 4.13 (4) that (lax, )=,
(la'z’,x).

By applying Proposition 4.13 (2) or (3) m times respectively, we get

(w, %) = (ulax,*) =, (uld'2’, %) = (v, %).

"Only if:> We will proceed by induction on m to show a stronger statement: If (w,x) =, (v,*),
then uw =, uv for every u € A* (especially for u = ¢).

e For m = 0: We have w = v = € and, because =, is an equivalence, uw = u =, u = uwv.
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e For m = m/ + 1: Tt follows from Proposition 4.13 that we only need to consider three
cases:

— If w = aw’ and v = av’ with (v, %) =, (v, x): We set & = ua and, by applying the
inductive hypothesis with @, we get uw = vaw’ = aw’ =, W' = uav’ = uv.
— If w = law’ and v = lav” with (w',x) =, (v/,%): We set @& = ula and, by applying the

inductive hypothesis with @, we get uw = ulaw’ = ww' =, w0’ = ulav’ = uv.

— If w = law’ and v = Ibv’ with a # b, a ¢ FN((v',%)), and (w',%) =4 ((a b)v',%):
It follows from Lemma 4.12 with N = {a} that there exists an & € A™ with
(v, %) =4 (V', %) and a#v’. Note that, by Proposition 2.8, we have

(a)(a b = ()7 (5.2)

By equivariance of =, we get (w',x) =, ((a b)?’, ). It now follows that

ww = ulaw’ by assumption
=, ula((a b)v") by inductive hypothesis with @ = ula
=, ulb?’ by definition of =, and Equation 5.2
=, ulbv’ by inductive hypothesis with 4 = ulb
= uv by assumption.

O]

With this, we can show that the a-trace sequence generated by our graded semantics captures
the local freshness semantics of RNNAs.

Theorem 5.10. Let s € Q be a state in an RNNA defined by v : Q — H(Q) andn € Ny. Then
©,, (M () (v (5))) = {(w, %) : w € D(La(s)), |w| = n}.

Proof. We fix a splitting vy, : (A" x Q)/Z4 — A" x Q.

By computation, we get

Mn(!)(fy(")(s)) = M,(!) ([queyn[ng)(s)] wq}n> by Theorem 5.8
= :(quevn[ﬁg’z)(s)} wq) O‘g]n by Definition 3.28
= qu@n[ﬁ&n)(s)} (qu)ag}n by Lemma 4.33 (4)
= :qu@n[ﬁ&")(sn w(!(q))}n by Definition 3.4
= -qu@n[ﬁ&m(s)} w*]n by definition of !.

It then follows that

B, (M, (1) (™ (s))) = U D((w»)]a) by Proposition 4.38
wgvn LGV (s)]
= {(z,%) € D([(w,%)]a) : wq € va[LT(s)]}.

So assume (z,%) € D([(w,*)]s) with wg € vn[lig")(s)]. It follows that [wqls € f}&n)(s) By
definition of LI, we know that s o, ¢ with [w'¢']s = [wqla and thus [w'], € La(s). It
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furthermore follows from Proposition 4.16 that [(w’,*)]s = [(w,*)]a and, by Proposition 5.9,
[W]a = [W']a € La(s).

Since (z,%) € D([(w,*)]4), we also have (z,%) = ub((Z,*)) for some (Z,*) € [(w,*)]a and thus
x = ub(z). It follows from Proposition 5.9 that [Z], = [w]s. By Definition 2.20, we can conclude
that x = ub(Z) € D(Lq(9)).

Conversely, assume w € D(Ly(s)) with |w| = n. By Definition 2.20, we know that w = ub(w)

for some w € L,(s). So there exists a state ¢ € @ with s o, q. It follows that [wq|s €
£ (s), and thus w'q’ € v,[L™(s)] with [w'¢']s = [Wg]s. Tt follows from Pr0p081t10n 4.16 that
[(w,%)]a = [(@0,%)]a. We can then conclude that (w,*) = ub((w, %)) € D([(w',*)]4)- O

Corollary 5.11. Let ¢ € Q and s € S be states in the RNNAs defined by v : Q@ — H(Q)
and § : S — H(S). The states q and s are a-trace equivalent in the graded semantics iff

D(La(q)) = D(La(s))-
Proof. First, we note that

D(Lo(2)) = |J {w € D(La(@)) : w| = n}, (5-3)

n€eNp

where the individual subsets are disjoint.

It then follows that

g and s a-trace equivalent

& Vne Ny M,(N(v"™(q)) = M,()(6™(s)) by definition

& VneNg. &,(M,(1)(Y™(q))) = (M, (1) (6™ (5))) by Theorem 4.40
< Vne Ny {we D(La(q)): |w| =n}={we D(La(s)) : |lw| =n} by Theorem 5.10
< D(La(q)) = D(La(9)) by Equation 5.3.
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6 Conclusion

In this work, we have demonstrated how the trace semantics of RNNAs under local freshness
can be described in the framework of graded monads. To achieve this, we have first introduced a
notion of graded theories on the category of nominal sets. This falls in line with similar work that
has been done for other categories [For+25; FMS20]. By first defining nominal graded theories
in a more general setting and showing that, for every such graded theory, a graded monad on
Nom arises from an adjunction (as shown in Corollary 3.29), we have built a framework which
could be used or extended to express other semantics.

The actual graded theory for the local freshness semantics was then constructed by first defin-
ing a suitable semantics for a single pretraces of an RNNA. By defining alpha-equivalence on
pretraces, taking into account the support of the poststate, we were able to show that the
interpretation is injective from the equivalence classes of pretraces modulo alpha-equivalence
(see Proposition 4.19). This interpretation was then extended to sum terms, which are able to
capture all of the alternative pretraces that can be produced by a state in an RNNA, using the
fact that RNNASs are finitely branching up to alpha-equivalence. We were also able to show that
this extended interpretation is also injective (see Theorem 4.40). Finally, we have shown that
by "forgetting” the poststates of those pretraces, we get exactly the traces under local freshness
semantics (see Proposition 5.9). With this, we were able to conclude that our graded semantics
captures exactly the local freshness trace semantics of RNNAs (see Corollary 5.11).

Furthermore, since we have given an explicit algebraic description of the graded theory in which
all operations and equations are at most depth-1, it follows from Theorem 3.36 that the induced
graded monad is also depth-1. Once again, by showing the depth-1 property for graded monads
induced by arbitrary depth-1 graded theories, this could be used as a foundation for other
depth-1 graded theories as well.

Although we have defined the interpretation of pretrace terms as a model F'(X) in Defini-
tion 4.20, this definition does not yield a functor in the expected way, as seen in Example 4.27.
A possible next step is to give an alternative definition of a functor Nom — Alg(T,n) for our
graded theory and thus give an alternative definition of the graded monad, similar to the one
seen in Example 2.25 for the trace semantics of LTS. This would also be useful for extending
the definition of the functor H to use ufs sets as in the original work instead of finite sets.
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